Project description:Acinetobacter baumannii AB042, a triclosan-resistant mutant, was examined for modulated gene expression using whole genome sequencing, transcriptomics, and proteomics in order to understand the mechanism of triclosan-resistance as well as its impact on A. Baumannii.
Project description:To explore how multiple drug-resistant A. baumannii response to colistin resistance, we compared the genomic, transcriptional and proteomic profile of A. baumannii MDR-ZJ06 to that of induced colistin resistant strain ZJ06-200P5-1.
Project description:Using Nanopore sequencing, our study has revealed a close correlation between genomic methylation levels and antibiotic resistance rates in Acinetobacter Baumannii. Specifically, the combined genome-wide DNA methylome and transcriptome analysis revealed the first epigenetic-based antibiotic-resistance mechanism in A. baumannii. Our findings suggest that the precise location of methylation sites along the chromosome could provide new diagnostic markers and drug targets to improve the management of multidrug-resistant A. baumannii infections.
Project description:The bacterial pathogen, Acinetobacter baumannii, is a leading cause of drug-resistant infections. Here, we investigated the potential of developing nanobodies that specifically recognize A. baumannii over other Gram-negative bacteria. Through generation and panning of a synthetic nanobody library, we identified several potential lead candidates. We demonstrate how incorporation of next generation sequencing analysis can aid in selection of lead candidates for further characterization. Using monoclonal phage display, we validated the binding of several lead nanobodies to A. baumannii. Subsequent purification and biochemical characterization revealed one particularly robust nanobody that broadly and specifically bound A. baumannii compared to other common drug resistant pathogens. These findings support the potentially for nanobodies to selectively target A. baumannii and the identification of lead candidates for possible future diagnostic and therapeutic development.
Project description:RNA sequencing was carried out by ARK genomics, Edinburgh on an Illumina HiSeq platform to compare gene expression in Acinetobacter baumannii strain AYE and an adeRS deletion mutant in this strain.
Project description:RNA sequencing was carried out at BGI, Hong Kong on an Illumina HiSeq platform to compare gene expression in Acinetobacter baumannii strain S1 and an adeAB deletion mutant in this strain.
Project description:RNA sequencing was carried out at the University of Birmingham on an Illumina MiSeq platform to compare gene expression in Acinetobacter baumannii strain AYE and an adeB deletion mutant in this strain.
Project description:We analyzed the extracellular proteome of colistin-resistant Korean Acinetobacter baumannii (KAB) strains to identify proteome profiles that can be used to characterize extensively drug-resistant KAB strains.
Project description:A major reservoir for spread of the emerging pathogen Acinetobacter baumannii is hopsital surfaces, where bacteria persist in a desiccated state. To identify gene products influencing desiccation survival, a transposon sequencing (Tn-seq) screen was performed. Using this approach, we identified genes both positively and negatively impacting the desiccation tolerance of A. baumannii.