Project description:Previously, we performed DNA array-based transcriptomic analysis of Clostridium acetobutylicum biofilm adsorbed onto fibrous matrix in batch fermentation. Here, to further shed light on the transcriptomic modulation of maturing Clostridium acetobutylicum biofilm, we performed the DNA array-based transcriptomic analysis in repeated-batch fermentation. Significant time course changes in expression levels were observed for the genes involved in amino acid metabolism, oligopeptide ABC transporter, nitrogen fixation, and various other processes.
Project description:Previously, we performed DNA array-based transcriptomic analysis of Clostridium acetobutylicum biofilm adsorbed onto fibrous matrix in batch fermentation. Here, to further shed light on the transcriptomic modulation of maturing Clostridium acetobutylicum biofilm, we performed the DNA array-based transcriptomic analysis in repeated-batch fermentation. Significant time course changes in expression levels were observed for the genes involved in amino acid metabolism, oligopeptide ABC transporter, nitrogen fixation, and various other processes. Repeated-batch fermentation was carried out in 2-L stainless steel columns packed with 40 g of cotton towel ?cut into pieces?approximately 3 cm × 5 cm) containing 1.5 L of P2 medium. Medium circulation rate was maintained at 35 mL/min via a peristaltic pump and the temperature was controlled at 37°C. Fermentation broth was replaced with fresh P2 medium every 12 h. Samples were withdrawn at 6 h after the medium replacement at predetermined interval, except for the last 3 samples. The last 3 samples were withdrawn at 12 h, 15 h, and 17 h after the medium replacement, respectively, to study the transcriptomic response to the adverse condition at the end of fermentation. A total of 8 samples were withdrawn over a period of 7 days, and time course gene expression profiles were studied.