Project description:This dataset includes RNAseq data of 7 tissues/developmental stages of Lathyrus sativus genotype LSWT11 and 2 tissues with drought- and well-watered treatments of Lathyrus sativus genotypes LS007 and Mahateora. These data were used in the functional annotation pipeline of the Rbp1.0 genome assembly of LS007. The multi-tissue transcriptome was also used to support gene candidate identification by mRNA abundance. Also included is Hi-C sequencing data used to scaffold the assembly into pseudochromosomes
Project description:Grass pea seeds and seedlings protein extracts were chromatographically fractionated. To identify the β-ODAP synthase enzyme, active fractions, as determined by a colorimetric assay that detects the presence of a derivative of free L-α,β-diaminopropionic acid (L-DAPA), were subjected to tryptic digestion and LC-MS/MS and searched against a database containing translated sequences from a long-read PacBio mRNA sequencing of grass pea seeds and seedlings.
Project description:An enzyme catalysing the synthesis of sym-homospermidine from putrescine and NAD+ with concomitant liberation of NH3 was purified 100-fold from Lathyrus sativus (grass pea) seedlings by affinity chromatography on Blue Sepharose. This thiol enzyme had an apparent mol.wt. of 75000 and exhibited Michelis-Menten kinetics with Km 3.0mM for putrescine. The same enzyme activity could also be demonstrated in the crude extracts of sandal (Santalum album) leaves, but with a specific activity 15-fold greater than that in L. sativus seedlings.
Project description:Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.