Project description:FASTQ Sequencing files of 5 healthy pancreas tissues and 6 pancreatic ductal adenocarcinoma (PDAC) tissues. Analysis of data is presented in the manuscript: Next generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer in BMC Molecular Cancer.
Project description:Oncogenic KRAS drives cancer growth by activating diverse signaling networks, not all of which have been fully delineated. We set out to establish a system-wide profile of the KRAS-regulated kinase signaling network (kinome) in KRAS-mutant pancreatic ductal adenocarcinoma (PDAC). We knocked down KRAS expression in a panel of six cell lines, and then applied Multiplexed Inhibitor Bead/Mass Spectrometry (MIB/MS) chemical proteomics to monitor changes in kinase activity and/or expression. We hypothesized that depletion of KRAS would result in downregulation of kinases required for KRAS-mediated transforming activities, and in upregulation of other kinases that could potentially compensate for the deleterious consequences of the loss of KRAS. We identified 15 upregulated and 13 downregulated kinases in common across the panel. In agreement with our hypothesis, all 15 of the upregulated kinases have established roles as cancer drivers (e.g., SRC, TGFBR1, ILK), and pharmacologic inhibition of the upregulated kinase, DDR1, suppressed PDAC growth. Interestingly, 11 of the 13 downregulated kinases have established driver roles in cell cycle progression, particularly in mitosis (e.g., WEE1, Aurora A, PLK1). Consistent with a crucial role for the downregulated kinases in promoting KRAS-driven proliferation, we found that pharmacologic inhibition of WEE1 also suppressed PDAC growth. The unexpected paradoxical activation of ERK upon WEE1 inhibition led us to inhibit both WEE1 and ERK concurrently, which caused further potent growth suppression and enhanced apoptotic death than WEE1 inhibition alone. We conclude that system-wide delineation of the KRAS-regulated kinome can identify potential therapeutic targets for KRAS-mutant pancreatic cancer.
Project description:Effect of GA on PAC and PAO1 treated Arabidopsis seeds. Seeds were treated during 20h with paclobutrazol (PAC) or with lyophilized extracts of Pseudomonas aeruginosa liquid culture medium (PAO1). Experiments were also performed with exogenous application of gibberellic acid.
Project description:We show here the transcriptional response in the lung of pigs infected or not with Ascaris suum, fed either a control pr a PAC-enriched diet
Project description:We show here the transcriptional response in the liver of pigs infected or not with Ascaris suum, fed either a control pr a PAC-enriched diet
Project description:We show here the transcriptional response in the intestine of pigs infected or not with Ascaris suum, fed either a control pr a PAC-enriched diet
Project description:Background/Aims: Microarray-based comparative genomic hybridisation (CGH) has allowed high-resolution analysis of DNA copy number alterations across the entire cancer genome. Recent advances in bioinformatics tools enable us to perform a robust and highly sensitive analysis of array CGH data and facilitate the discovery of novel cancer-related genes. Methods: We analysed a total of 29 pancreatic ductal adenocarcinoma (PDAC) samples (six cell lines and 23 microdissected tissue specimens) using 1 Mb-spaced CGH arrays. The transcript levels of all genes within the identified regions of genetic alterations were then screened using our Pancreatic Expression Database. Results: In addition to 238 high-level amplifications and 35 homozygous deletions, we identified 315 minimal common regions of “non-random” genetic alterations (115 gains and 200 losses) which were consistently observed across our tumour samples. The small size of these aberrations (median size of 880 kb) contributed to the reduced number of candidate genes included (on average 12 Ensembl-annotated genes). The database has further specified the genes whose expression levels are consistent with their copy number status. Such genes were UQCRB, SQLE, DDEF1, SLA, ERICH1 and DLC1, indicating that these may be potential target candidates within regions of aberrations. Conclusion: This study has revealed multiple novel regions that may indicate the locations of oncogenes or tumour suppressor genes in PDAC. Using the database, we provide a list of novel target genes whose altered DNA copy numbers could lead to significant changes in transcript levels in PDAC. (Harada et al. Pancreatology) Keywords: pancreatic ductal adenocarcinima, tissue microdissection, array CGH, genetic alterations A panel of 23 microdissected PDAC tissues and 6 PDAC-derived cell lines were analysed using Sanger's CGH arrays with 1 Mb resolution. Clinical info of the samples used is provided as a supplementary file.