Project description:Two potato cultivars, Russet Burbank and Bionta, were inoculated with three different endophytes containing different AHL types. The impact of the endophytes to the different cultivars was measured by gene expression analysis with a customized microarray
Project description:Identifying and characterizing antimicrobial producing Burkholderia from the medicinal plant rhizosphere and soils of the Western Ghats, India
Project description:Bacterial endophytes are found in the internal tissues of plants and have intimate associations with their host. However, little is known about the diversity of medicinal plant endophytes (ME) or their capability to produce specialised metabolites that may contribute to therapeutic properties. We isolated 75 bacterial ME from 24 plant species of the Western Ghats, India. Molecular identification by 16S rRNA gene sequencing grouped MEs into 13 bacterial genera, with members of Gammaproteobacteria and Firmicutes being the most abundant. To improve taxonomic identification, 26 selected MEs were genome sequenced and average nucleotide identity (ANI) used to identify them to the species-level. This identified multiple species in the most common genus as Bacillus. Similarly, identity of the Enterobacterales was also distinguished within Enterobacter and Serratia by ANI and core-gene analysis. AntiSMASH identified non-ribosomal peptide synthase, lantipeptide and bacteriocin biosynthetic gene clusters (BGC) as the most common BGCs found in the ME genomes. A total of five of the ME isolates belonging to Bacillus, Serratia and Enterobacter showed antimicrobial activity against the plant pathogen Pectobacterium carotovorum. Using molecular and genomic approaches we have characterised a unique collection of endophytic bacteria from medicinal plants. Their genomes encode multiple specialised metabolite gene clusters and the collection can now be screened for novel bioactive and medicinal metabolites.
Project description:Two potato cultivars, Russet Burbank and Bionta, were inoculated with three different endophytes containing different AHL types. The impact of the endophytes to the different cultivars was measured by gene expression analysis with a customized microarray B. phytofirmans type strain PsJN was originally isolated as a contaminant from surface-sterilized, Glomus vesculiferum-infected onion roots (Nowak et al., 1998), whereas strain P6 RG6-12 was isolated from the rhizosphere of a grassland in the Netherlands (Salles et al., 2006). This strain was selected based on its similarity to strain PsJN based on 16S rRNA gene homology, and similar phenotypic features. Both strains were generally cultivated on King's medium (King et al., 1954). For the mutant AHL to the strain B. phytofirmans PsJN a quorum quenching approach as described by Wopperer et al., 2006 was employed. Plasmid pMLBAD-aiiA, which contains aiiA, the Bacillus sp. 240B1 lactonase gene, was transferred to B. phytofirmans PsJN by triparental mating as described by de Lorenzo and Timmis (1994). 2 cultivars, 3 endophytes
Project description:Hypnale hypnale (hump-nosed pit viper) is considered to be one among the medically important venomous snake species of India and Sri Lanka. In the present study, venom proteome profiling of a single Hypnale hypnale from Western Ghats of India was achieved using SDS-PAGE based protein separation followed by LC-MS/MS analysis
Project description:This project mainly aims to characterize the complex toxic components present in the venom of Indian cobra (Naja naja) from the Western Ghats of India. Naja naja (NN) is native to the Indian subcontinent and is also found in Pakistan, Sri Lanka, Bangladesh and Southern Nepal. It is a highly venomous snake species of genus Naja of the Elapidae family. They are seen in wide habitats like plains, dense or open forests, rocky terrains, wetlands, agricultural lands, and outskirts of villages and even in highly populated urban areas. This species has been included in the ‘Big 4’ category of venomous snake species that accounts for majority of morbidity and mortality cases in India. Therefore, exploring the venom proteome of Naja naja is decisive to develop and design new antivenom and therapeutics against its envenomation. The venom proteome of Naja naja was characterized through various orthogonal separation strategies and identification strategies. In order to achieve this the crude venom components were resolved on a 12% SDS page. Also, the venom was decomplexed through reversed-phase HPLC followed by SDS analysis. Further each of the bands were subjected to in-gel digestion using trypsin, chymotrypsin and V8 proteases. All the digested peptides were then subjected to Q-TOF LC-MS/MS analysis.
Project description:Plant diseases caused by phytopathogens are responsible for significant crop losses worldwide. Resistance induction and biological control have been exploited in agriculture due to their enormous potential. In this study, we investigated the antimicrobial potential of endophytic fungi of leaves and petioles of medicinal plants Vochysia divergens and Stryphnodendron adstringens located in two regions of high diversity in Brazil, Pantanal, and Cerrado, respectively. We recovered 1,304 fungal isolates and based on the characteristics of the culture, were assigned to 159 phenotypes. One isolate was selected as representative of each phenotype and studied for antimicrobial activity against phytopathogens. Isolates with better biological activities were identified based on DNA sequences and phylogenetic analyzes. Among the 159 representative isolates, extracts from 12 endophytes that inhibited the mycelial growth (IG) of Colletotrichum abscissum (≥40%) were selected to expand the antimicrobial analysis. The minimum inhibitory concentrations (MIC) of the extracts were determined against citrus pathogens, C. abscissum, Phyllosticta citricarpa and Xanthomonas citri subsp. citri and the maize pathogen Fusarium graminearum. The highest activity against C. abscissum were from extracts of Pseudofusicoccum stromaticum CMRP4328 (IG: 83% and MIC: 40 μg/mL) and Diaporthe vochysiae CMRP4322 (IG: 75% and MIC: 1 μg/mL), both extracts also inhibited the development of post-bloom fruit drop symptoms in citrus flowers. The extracts were promising in inhibiting the mycelial growth of P. citricarpa and reducing the production of pycnidia in citrus leaves. Among the isolates that showed activity, the genus Diaporthe was the most common, including the new species D. cerradensis described in this study. In addition, high performance liquid chromatography, UV detection, and mass spectrometry and thin layer chromatography analyzes of extracts produced by endophytes that showed high activity, indicated D. vochysiae CMRP4322 and P. stromaticum CMRP4328 as promising strains that produce new bioactive natural products. We report here the capacity of endophytic fungi of medicinal plants to produce secondary metabolites with biological activities against phytopathogenic fungi and bacteria. The description of the new species D. cerradensis, reinforces the ability of medicinal plants found in Brazil to host a diverse group of fungi with biotechnological potential.