Project description:Background X-linked juvenile retinoschisis (XLRS) is an inherited disease caused by RS1 gene mutation, which leads to retinal splitting and visual impairment. The mechanism of RS1-associated retinal degeneration is not fully understood. Besides, animal models of XLRS have limitations in the study of XLRS. Here, we used human induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs) to investigate the disease mechanisms and potential treatments for XLRS. Methods hiPSCs reprogrammed from peripheral blood mononuclear cells of two RS1 mutant (E72K) XLRS patients were differentiated into ROs. Subsequently, we explored whether RS1 mutation could affect RO development and explore the effectiveness of RS1 gene augmentation therapy. Results ROs derived from RS1 (E72K) mutation hiPSCs exhibited a developmental delay in the photoreceptor, retinoschisin (RS1) deficiency, and altered spontaneous activity compared with control ROs. Furthermore, the delays in development were associated with decreased expression of rod-specific precursor markers (NRL) and photoreceptor-specific markers (RCVRN). Adeno-associated virus (AAV)-mediated gene augmentation with RS1 at the photoreceptor immature stage rescued the rod photoreceptor developmental delay in ROs with the RS1 (E72K) mutation. Conclusions The RS1 (E72K) mutation results in the photoreceptor development delay in ROs and can be partially rescued by the RS1 gene augmentation therapy.
Project description:PurposeThree related male English Cocker Spaniels (ECS) were reported to be congenitally blind. Examination of one of these revealed complete retinal detachment. A presumptive diagnosis of retinal dysplasia (RD) was provided and pedigree analysis was suggestive of an X-linked mode of inheritance. We sought to investigate the genetic basis of RD in this family of ECS.MethodsFollowing whole genome sequencing (WGS) of the one remaining male RD-affected ECS, two distinct investigative approaches were employed: a candidate gene approach and a whole genome approach. In the candidate gene approach, COL9A2, COL9A3, NHEJ1, RS1 and NDP genes were investigated based on their known associations with RD and retinal detachment in dogs and humans. In the whole genome approach, affected WGS was compared with 814 unaffected canids to identify candidate variants, which were filtered based on appropriate segregation and predicted pathogenic effects followed by subsequent investigation of gene function. Candidate variants were tested for appropriate segregation in the ECS family and association with disease was assessed using samples from a total of 180 ECS.ResultsThe same variant in NDP (c.653_654insC, p.Met114Hisfs*16) that was predicted to result in 15 aberrant amino acids before a premature stop in norrin protein, was identified independently by both approaches and was shown to segregate appropriately within the ECS family. Association of this variant with X-linked RD was significant (P = 0.0056).ConclusionsFor the first time, we report a variant associated with canine X-linked RD. NDP variants are already known to cause X-linked RD, along with other abnormalities, in human Norrie disease. Thus, the dog may serve as a useful large animal model for research.
Project description:Retinal microvascularization can provide important informations to systemic vascular phenomena. The non-invasive quantitative description of the retinal vascularization is now possible by performing OCT-angiography and their image analysis software (vascular density and retinal perfusion). Systemic microvacular changes during the establishment of oncological treatment by targeted antiangiogenic therapy are little described in the literature. The objective of this pilot study is to describe the evolution of the retinal vascular density of patients with antiangiogenic drugs. In addition, the evolution of the retinal vascular density of patients on antiangiogenic drugs will study as a function of the response to the treatment and the toxicity of these treatments.
Project description:Low molecular weight (LMW) proteins were purified from English walnuts (J. regia cv. Chandler). The LMW proteins were separated by anion exchange chromatography. The anion exchange fractions were analyzed by SDS-PAGE, and protein bands were excised. In gel trypsin digestion was conducted (following reduction with DTT and alkylation with iodoacetamide). Peptides were separated by RP-HPLC and analyzed with an LTQ Orbitrap XL. Peptide and protein identifications were obtained with Mascot.
Project description:To explore the mechanism associated with retinal degeneration and adeno-associated virus (AAV)-mediated gene therapy in rd10 mouse, a model of autosomal recessive retinitis pigmentosa (arRP) containing mutation of β subunit of the rod cGMP phosphodiesterase 6 (PDE6).