Project description:This SuperSeries is composed of the following subset Series: GSE37664: Human cerebrospinal fluid autoantibody lipid microarray profiling (Fig. 1A) GSE37670: Human cerebrospinal fluid autoantibody lipid microarray profiling (Fig. 2A) GSE37826: Human cerebrospinal fluid autoantibody lipid microarray profiling (Fig. 2C) Refer to individual Series
Project description:BackgroundEscherichia coli is an opportunistic bacterium that causes a wide range of diseases, such as bloodstream infection and central nervous system infection. The traditional culture-based method to detect E. coli usually takes more than 2 days. The object of this study is to explore the value of metagenomic next-generation sequencing (mNGS) in identifying E. coli from human cerebrospinal fluid. In addition, we investigated the infection source of E. coli through whole genome sequencing and phylogenetic analysis.MethodsWe combined a clinical example to analyze the function of mNGS in pathogen detection from cerebrospinal fluid. NextSeq 550Dx platform was applied for mNGS. Next, whole genome sequencing was performed to obtain the genomic characterization of E. coli. Furthermore, we screened 20 E. coli strains from the National Center for Biotechnology Information and conducted a phylogenetic analysis.ResultsA middle-aged patient who attended our hospital was diagnosed with craniopharyngioma and received surgery. The patient had recurrent fever and persistent lethargy after surgery. Cerebrospinal fluid culture firstly failed to grow the bacteria. Next the cerebrospinal fluid sample was detected by mNGS and the sequence readings of E. coli were identified. Later, E. coli was reported via the second cerebrospinal fluid culture, certifying the result of mNGS. Moreover, we also cultured carbapenem-resistant E. coli from the patient's bloodstream. Through whole genome sequencing and phylogenetic analysis, we found that the E. coli isolated from cerebrospinal fluid and the bloodstream was 100% homologous, indicating the E. coli central nervous system infection was originated from the bloodstream.ConclusionMetagenomic next-generation sequencing is a valuable tool to identify the pathogens from cerebrospinal fluid, and seeking the infection source is of great significance in clinical diagnosis and treatment. Furthermore, carbapenem-resistant E. coli is a serious problem as the cause of bloodstream infection and central nervous system infection, and effective and adequate measures to prevent and control the present circumstance are urgent.
Project description:RNA was isolated from fresh cerebrospinal fluid samples of multiple sclerosis and control patients and analyzed by hybridization of HG U133 plus 2.0 arrays in order to investigate disease mechanisms of multiple sclerosis and to identify transcriptional biomarker
Project description:Lipids comprise 70% of the myelin sheath, and autoantibodies against lipids may contribute to the demyelination that characterizes multiple sclerosis (MS). We used lipid antigen microarrays and lipid mass spectrometry to identify bona fide lipid targets of the autoimmune response in MS brain and an animal model of MS to explore the role of the identified lipids in autoimmune demyelination. We found that autoantibodies in MS target a phosphate group in phosphatidylserine and oxidized phosphatidylcholine derivatives. Administration of these lipids ameliorated experimental autoimmune encephalomyelitis by suppressing activation and inducing apoptosis of autoreactive T cells, effects mediated by the lipids' saturated fatty-acid side chains. Thus, phospholipids represent a natural anti-inflammatory class of compounds that have potential as novel therapeutics for MS. Fig. 1A. Lipid-array profiling of IgG+IgM antibody reactivity in cerebrospinal fluid (CSF) samples from MS patients (relapsing remitting MS; secondary progressive MS; primary progressive MS), healthy controls, and other neurological disease controls. Lipid hits with the lowest FDR (q=0.048) were clustered according to their reactivity profiles. 48 different lipids were custom-spotted in duplicate using the CAMAG Automatic TLC Sampler (ATS4) robot to spray 200 nl of 10 to 100 pmol of lipids onto PVDF membranes affixed to the surface of microscope slides. The slides were probed with cerebrospinal fluid (CSF) from 59 human patient samples. 60 slides total: 18 relapsing-remitting MS, 14 secondary-progressive MS, 1 primary-progressive MS, 21 other neurological disease, 5 healthy control, 1 secondary Ab alone (not included in this submission). CSF diluted 1/10. HRP-conjugated secondary Ab (goat anti-human IgM/IgG) diluted 1/8000. ECL for 3 minutes.
Project description:Using single cell RNA sequencing (scRNA-seq) on cerebrospinal fluid (CSF) and blood from adults with HIV, we identified a rare (<5% of cells) subset of myeloid cells that are found only in CSF and that present a gene expression signature that overlaps significantly with neurodegenerative disease associated microglia