Project description:We demonstrate an age-independent loss of type H bone endothelium in heart failure after myocardial infarction in both mice and in humans. Using single-cell RNA sequencing, we delineate the transcriptional heterogeneity of human bone marrow endothelium showing increased expression of inflammatory genes, including IL1B and MYC, in ischemic heart failure. Endothelial-specific overexpression of MYC was sufficient to induce type H bone endothelial cells, whereas inhibition of NLRP3-dependent IL-1 production partially prevents the post-myocardial infarction loss of type H vasculature in mice.
Project description:We demonstrate an age-independent loss of type H bone endothelium in heart failure after myocardial infarction in both mice and in humans. Using single-cell RNA sequencing, we delineate the transcriptional heterogeneity of human bone marrow endothelium showing increased expression of inflammatory genes, including IL1B and MYC, in ischemic heart failure. Endothelial-specific overexpression of MYC was sufficient to induce type H bone endothelial cells, whereas inhibition of NLRP3-dependent IL-1 production partially prevents the post-myocardial infarction loss of type H vasculature in mice.
Project description:Hematopoiesis advances cardiovascular disease by generating inflammatory leukocytes that attack the arteries, heart and brain. While it is well documented that the bone marrow niche regulates hematopoietic stem cell proliferation and hence the systemic leukocyte pool, it is less clear how cardiovascular disease affects the vasculature forming this niche. Here we show that arterial hypertension, atherosclerosis and myocardial infarction alter the anatomy and function of bone marrow vasculature. Hypertension and atherosclerosis instigated vascular fibrosis, leakage and endothelial dysfunction in the bone marrow. Myocardial infarction induced vascular leakage and bone marrow angiogenesis via Vegf signaling. Endothelial cell-specific deletion of the Vegf receptor 2 limited emergency hematopoiesis after myocardial infarction, indicating that new vasculature supports higher blood cell production. RNA-sequencing of bone marrow endothelial cells revealed inflammatory gene expression in mice with cardiovascular disease. Endothelial cell-specific deletion of interleukin 6 or versican, which were highly expressed in mice with atherosclerosis or myocardial infarction, respectively, reduced hematopoiesis and systemic myeloid cells. Taken together, cardiovascular disease affects the vascular bone marrow niche, thus influencing hematopoietic stem cell behavior and expanding innate immune cell supply to atherosclerotic plaque and ischemic myocardium. Interrupting this feed back loop may constrain cardiovascular inflammation.
Project description:We tested it in an animal model of myocardial infarction to ensure whether early initiation of dapagliflozin (DAPA), or different orders of combination with sacubitril-valsartan would result in a greater improvement of heart function than sacubitril-valsartan alone in post-myocardial infarction heart failure.
Project description:To define the cellular landscape of human myocardial infarction and heart failure, we performed Cellular Indexing of Transcriptomes and Epitomes by sequencing (CITE-seq) in 22 explanted human hearts from healthy donors, acute myocardial infarction (MI),and chronic ischemic and non-ischemic cardiomyopathy patients.
Project description:Background and Aims: It is known that inflammatory processes are activated in heart failure, but the regulation of cytokines and their role in the pathogenesis of the disease are not well understood. To address this issue, we have performed microarray analysis of non-infarcted left ventricular tissue from mice at various time-points after myocardial infarction. Methods: Molecular alterations in myocardial tissue were measured 3, 5, 7 and 14 days after induced infarction by using cDNA microarrays. Sham operated mice served as controls. Altered gene transcriptions were verified by real-time polymerase chain reaction. Attention focused on genes encoding cytokines which had not previously been assigned a role in heart failure development. Results: The highest number of regulated genes was found at day 5 post myocardial infarction, and 22 genes encoding cytokines were identified as being regulated. Several of the identified genes encoding cytokines have not previously been associated with HF, and among those fractalkine showed strongest up-regulation. Keywords: Disease state analysis, time course
Project description:Patients with acute myocardial infarction (a condition classified under coronary heart disease, including STEMI and NSTEMI) are at high risk for recurrent ischemic events, but the pathways and factors which contribute to this elevated risk are incompletely understood. This study aims to identify biomarkers associated with acute myocardial infarction through various omics strategies. For the identified biomarkers, we aim to demonstrate prognostic value, and predict/stratify the risks of adverse cardiovascular events (e.g., stroke, heart failure, death).
Project description:Affymetrix microarray analysis of molecular changes after myocardial infarction. Samples of heart tissue were analyzed after myocardial infarction from WT and reg3beta knock-out mice. Samples from scar tissue and samples adjacent to the scar were analyzed. In the experiment we primarily compared infarction zone of wild-type to infarction zone of knock-out animals, and remote zone of wild-type to remote zone of knock-outs.