Project description:Various transgenic CreER;tdTomato mouse-lines (Pdgfrb-CreER, Col1a1-CreER, Gli1-CreER, Cdh5-CreER, Myh11-CreER, Ng2-CreER) were pulsed with tamoxifen and subjected to either Sham or TAC surgery at 21 days after tamoxifen induction. Two and four weeks later, tdTomato-positive cells were isolated from hearts by FACS sorting and 10x Genomics scRNA 3'RNA sequencing pipeline was applied. We identified fibroblast, endothelial cells, mural cells and Schwann cells as major cardiac cell types in our samples. Gene expression changes between subtypes of the major cell types point towards a general upregulation of extra cellular matrix related genes, with fibroblasts being the highest producer.
Project description:To establish changes in cardiac transcription profiles brought about by heart failure we collected myocardial samples from patients undergoing cardiac transplantation whose failure arises from different etiologies (e.g. idiopathic dilated cardiomyopathy, ischemic cardiomyopathy, alcoholic cardiomyopathy, valvular cardiomyopathy, and hypertrophic cardiomyopathy) and from "normal" organ donors whose hearts cannot be used for transplants. The transcriptional profile of the mRNA in these samples will be measured with gene array technology. Changes in transcriptional profiles can be correlated with the physiologic profile of heart-failure hearts acquired at the time of transplantation. Keywords: other
Project description:To identify a novel target for the treatment of heart failure, we examined gene expression in the failing heart. Among the genes analyzed, 12/15 lipoxygenase (12/15-LOX) was markedly up-regulated in heart failure. To determine whether increased expression of 12/15-LOX causes heart failure, we established transgenic mice that overexpressed 12/15-LOX in cardiomyocytes. Echocardiography showed that 12/15-LOX transgenic mice developed systolic dysfunction. Cardiac fibrosis increased in 12/15-LOX transgenic mice with advancing age, and was associated with the infiltration of macrophages. Consistent with these observations, cardiac expression of monocyte chemoattractant protein-1 (Mcp-1) was up-regulated in 12/15-LOX transgenic mice compared with wild-type mice. Treatment with 12-hydroxy-eicosatetraenotic acid, a major metabolite of 12/15-LOX, increased MCP-1 expression in cardiac fibroblasts and endothelial cells, but not in cardiomyocytes. Inhibition of Mcp-1 reduced the infiltration of macrophages into the myocardium and prevented both systolic dysfunction and cardiac fibrosis in 12/15-LOX transgenic mice. Likewise, disruption of 12/15-LOX significantly reduced cardiac Mcp-1 expression and macrophage infiltration, thereby improving systolic dysfunction induced by chronic pressure overload. Our results suggest that cardiac 12/15-LOX is involved in the development of heart failure and that inhibition of 12/15-LOX could be a novel treatment for this condition. Heart failure is still one of the leading causes of death worldwide. Therefore, it is important to elucidate the underlying mechanisms of heart failure and develop more effective treatments for this condition. To clarify the molecular mechanisms of heart failure, we performed microarray analysis using cardiac tissue samples obtained from a hypertensive heart failure model (Dahl salt-sensitive rats). ~300 genes showed significant changes of expression in the failing hearts compared with control hearts. Among the genes analyzed, 12/15-lipoxygenase (12/15-LOX) was most markedly up-regulated in failing hearts compared with control hearts .
Project description:Heart failure and associated cachexia is an unresolved and important problem. We report a new model of severe heart failure that consistently results in cachexia. Mice lacking the integrated stress response (ISR) induced eIF2α phosphatase, PPP1R15A, exhibit a dilated cardiomyopathy and severe weight loss following irradiation, whilst wildtype mice are unaffected. This is associated with increased expression of Gdf15 in the heart and increased levels of GDF15 in the circulation. We provide evidence that blockade of GDF15 activity prevents cachexia and slows the progression of heart failure. Our data suggests that cardiac stress mediates a GDF15 dependent pathway that drives weight loss and worsens cardiac function. We show relevance of GDF15 to lean mass and protein intake with patients with heart failure. Blockade of GDF15 could constitute a novel therapeutic option to limit cardiac cachexia and improve clinical outcomes in patients with severe systolic heart failure.
Project description:Atherosclerosis and pressure overload are major risk factors for the development of heart failure in patients. Cardiac hypertrophy often precedes the development of heart failure. However, underlying mechanisms are incompletely understood. To investigate pathomechanisms underlying the transition from cardiac hypertrophy to heart failure we used experimental models of atherosclerosis- and pressure overload-induced cardiac hypertrophy and failure, i.e. apolipoprotein E (apoE)-deficient mice, which develop heart failure at an age of 18 months, and non-transgenic C57BL/6J (B6) mice with heart failure triggered by 6 months of pressure overload induced by abdominal aortic constriction (AAC). The development of heart failure was monitored by echocardiography, invasive hemodynamics and histology. The microarray gene expression study of cardiac genes was performed with heart tissue from failing hearts relative to hypertrophic and healthy heart tissue, respectively. The microarray study revealed that the onset of heart failure was accompanied by a strong up-regulation of cardiac lipid metabolism genes involved in fat synthesis, storage and oxidation. Microarray gene expression profiling was performed with heart tissue isolated from (i) 18 month-old apoE-deficient mice relative to age-matched non-transgenic C57BL/6J (B6) mice, (ii) 6 month-old apoE-deficient mice with 2 months of chronic pressure overload induced by abdominal aortic constriction (AAC) relative to sham-operated apoE-deficient mice and nontransgenic B6 mice, (iii) 10 month-old B6 mice with 6 months of AAC relative to sham-operated B6 mice, and (iv) 5 month-old B6 mice with 1 month of AAC relative to age-matched B6 mice.
Project description:Atherosclerosis and pressure overload are major risk factors for the development of heart failure in patients. Cardiac hypertrophy often precedes the development of heart failure. However, underlying mechanisms are incompletely understood. To investigate pathomechanisms underlying the transition from cardiac hypertrophy to heart failure we used experimental models of atherosclerosis- and pressure overload-induced cardiac hypertrophy and failure, i.e. apolipoprotein E (apoE)-deficient mice, which develop heart failure at an age of 18 months, and non-transgenic C57BL/6J (B6) mice with heart failure triggered by 6 months of pressure overload induced by abdominal aortic constriction (AAC). The development of heart failure was monitored by echocardiography, invasive hemodynamics and histology. The microarray gene expression study of cardiac genes was performed with heart tissue from failing hearts relative to hypertrophic and healthy heart tissue, respectively. The microarray study revealed that the onset of heart failure was accompanied by a strong up-regulation of cardiac lipid metabolism genes involved in fat synthesis, storage and oxidation.
Project description:To establish changes in cardiac transcription profiles brought about by heart failure we collected myocardial samples from patients undergoing cardiac transplantation whose failure arises from different etiologies (e.g. idiopathic dilated cardiomyopathy, ischemic cardiomyopathy, alcoholic cardiomyopathy, valvular cardiomyopathy, and hypertrophic cardiomyopathy) and from "normal" organ donors whose hearts cannot be used for transplants. The transcriptional profile of the mRNA in these samples will be measured with gene array technology. Changes in transcriptional profiles can be correlated with the physiologic profile of heart-failure hearts acquired at the time of transplantation. Keywords: other
Project description:Particulate Matter Triggers Carotid Body Dysfunction, Respiratory Dysynchrony and Cardiac Arrhythmias in Mice with Cardiac Failure; The mechanistic link between human exposure to airborne particulate matter (PM) pollution and the increased cardiovascular morbidity and mortality observed in people with congestive heart failure (CHF) is unknown. We now show that exposure of genetically-engineered mice with CHF (expressing a cardiac-specific CREB mutant transcription factor) to ambient PM (collected in Baltimore, mean aerodynamic diameter 1.9 um) unmasks severe autonomic morbidities manifested as significant reductions in heart rate variability, respiratory dysynchrony and increased frequency of serious ventricular arrhythmias, features not observed in PM-challenged wild type mice without CHF. PM exposure in CREB mice with CHF reflexly triggers autonomic dysfunction via heightened carotid body function as evidenced by pronounced afferent nerve responses to hypoxia and marked depression of breathing by hyperoxia challenge. Genomic analyses of lung and ventricular tissues revealed PM-induced molecular signatures of inflammation and oxidative stress. These findings in a murine model of cardiac failure provide the first direct assessment of autonomic function in response to PM challenge and are highly consistent with current epidemiologic findings on cardiovascular morbidity in susceptible PM-exposed human populations. We utilized a murine model of dilated cardiomyopathy to address potential mechanistic links between PM exposure and the development of life-threatening cardiac dysrhythmias. Experiment Overall Design: four group (n=3) of animals were treated by PBS or particulate matter (20mg/kg 1.9µm particulate matter) in Wild type or CD-1 dominate negative mice
Project description:We demonstrate an age-independent loss of type H bone endothelium in heart failure after myocardial infarction in both mice and in humans. Using single-cell RNA sequencing, we delineate the transcriptional heterogeneity of human bone marrow endothelium showing increased expression of inflammatory genes, including IL1B and MYC, in ischemic heart failure. Endothelial-specific overexpression of MYC was sufficient to induce type H bone endothelial cells, whereas inhibition of NLRP3-dependent IL-1 production partially prevents the post-myocardial infarction loss of type H vasculature in mice.