Project description:In the current study we did microarray of upland rice cultivar Nagina22 for drought stress at reproductive stage (panicle initiation) and analyzed drought stress responsive genes. We have taken flag leaf for our study as it is most essential organ for photosynthesis in rice. Normal watering Vs Drought Stress Flag leaf of Control (Three biological replicates) plant of Nagina22: C1, C2, C3 Flag leaf of drought stressed (Three biological replicates) plant of Nagina 22: S1, S2, S3
Project description:Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates. Keywords: Comparison of gene expression in three tissues with stress treatment and without treatment To globally elucidate potential genes involved in drought and high-salinity stresses responses in rice, an oligomer microarray covering 37,132 genes including cDNA or EST supported and putative genes was applied to study the expression profiling of shoot, flag leaf, and panicle under drought or high-salinity treatment. Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates.
Project description:Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates. Keywords: Comparison of gene expression in three tissues with stress treatment and without treatment
Project description:Drought avoidance mechanism is one of the component mechanisms contributing for drought tolerance in which roots serves as the master keys, but poorly understood. Comparative analysis of drought stress responsive root transcriptome between drought-tolerant Nootripathu and drought-susceptible IR20 In this study, we used microarrays to dissect out drought responsive changes in roots of two contrasting rice genotypes viz., IR 20 (a shallow rooted lowland indica genotype) and Nootripathu (a deep rooted upland indica genotype) at molecular level.
Project description:Transcription factors play a crucial regulatory role in plant drought stress responses. In this study, a novel drought stress related bZIP transcription factor, OsbZIP62, was identified in rice. This gene was selected from transcriptome analysis of several typical rice varieties with different drought tolerance. The expression of OsbZIP62 was obviously induced by drought, hydrogen peroxide, and abscisic acid (ABA) treatment. Overexpression of OsbZIP62-VP64 (OsbZIP62V) enhanced the drought tolerance and oxidative stress tolerance of transgenic rice, while the osbzip62 mutants showed the opposite phenotype. RNA-seq analysis showed that many stress-related genes (e.g. OsGL1, OsNAC10, and DSM2) were up-regulated in OsbZIP62V plants. OsbZIP62 could bind to the abscisic acid–responsive element (ABRE) and promoters of several putative target genes. Taken together, OsbZIP62 positively regulated rice drought tolerance through regulated the expression of genes associated with stress.
Project description:Global gene expression analysis of AtDREB1A transgenic rice line (TL4) at reproductive stage under drought stress was conducted using microarray to explore the drought stress-responsive transcription pathways. Drought stress was imposed at late vegetative stage till booting of the plants. Flag leaf was collected on 14th day of the drought stress. Drought stress was imposed on T3 plants of two homozygous transgenic rice events of PS2 and NT plants by withholding irrigation for 14 days in the National Phytotron Facility, IARI.
Project description:Rice is highly sensitive to drought, and the effect of drought may vary with the different genotypes and development stages. Genome-wide gene expression profiling was used as the initial point to dissect molecular genetic mechanism of this complex trait and provide valuable information for the improvement of drought tolerance in rice. Affymetrix rice genome array containing 48,564 japonica and 1,260 indica sequences was used to analyze the gene expression pattern of rice exposed to drought stress. The transcriptome from leaf, root, and young panicle at three developmental stages was comparatively analyzed combined with bioinformatics exploring drought stress related cis-elements.
Project description:The young panicles 2 cm length were used for expression analysis in well watered control and drought stressed treatment. The panicle samples from biological replicates of six rice varieties were obtained in three independent experiments. The expression profiles were generated using Affymetrix rice genome arrays.
Project description:In this study, genome-wide transcriptome profiling was used to understand molecular genetic mechanism of drought tolerance in rice. Illumina High-Seq 2000 platform was used for sequencing RNA from leaf tissue of rice plants exposed to controlled drought stress and well-watered conditions. The differentially expressed genes were used to identify biological process and cis-regulatory elements enriched under drought stress compared to well-watered conditions.
Project description:A heat and drought tolerant rice cultivar (N22) was grown in the field under control and drought conditions during the dry season in 2013. Drought was applied during early grain filling and resulted in simultaneous heat stress, leading to reduced grain yield and quality. Total RNA was extracted from developing seeds under stress and control (fully flooded) conditions and RNA-seq analysis was performed. These samples are a part of a bigger experiment analysing the responses of three contrasting rice cultivars (N22, Dular, Anjali) to combined heat and drought stress including different organs (developing seeds, flag leaves, flowering spikelets) and developmental stages (early grain filling, flowering) at the transcriptomic level.