Project description:In this study, we used transcriptomic and hormonomic approaches to examine drought-induced changes in barley roots and leaves and its rhizosphere. By studying hormonal responses, alternative splicing events in barley, and changes in the rhizosphere microbiome, we aimed to provide a comprehensive view of barley drought-adaptive mechanisms and potential plant-microbe interactions under drought stress. This approach improved our understanding of barley adaptive strategies and highlighted the importance of considering plant-microbe interactions in the context of climate change.
Project description:This is a comparative experiments of three barley genotypes harbouring allelic differences at a locus designated QRMC-3HS putatively implicated in the assembly of the microbial communities thriving at the root-soil interface, the so called rhizosphere microbiota. The RNA-seq experiment aimed at identify genes differentially regulated among the genotypes at the locus of interest. As the selected genotypes host contrasting microbiotas, we hypothesised that differentially expressed genes at the locus represent primary candidates for the trait of interest (i.e., microbiota recruitment).
Project description:Advances in DNA sequencing technologies has drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Here, we combined our recently developed protein extraction method and an iterative bioinformatics pipeline to enable the capture and identification of extracellular proteins (metaexoproteomics) synthesised in the rhizosphere of Brassica spp. We first validated our method in the laboratory by successfully identifying proteins related to a host plant (Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients in P. putida. Next, we analysed natural field-soil microbial communities associated with Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics, 1882 proteins were identified across bulk and rhizosphere samples. Meta-exoproteomics identified a clear shift (p<0.001) in the metabolically active fraction of the soil microbiota responding to the presence of B. napus roots that was not apparent in the composition of the total microbial community (metagenome). This metabolic shift was associated with the stimulation of rhizosphere-specialised bacteria, such as Gammaproteobacteria, Betaproteobacteria and Flavobacteriia and the upregulation of plant beneficial functions related to phosphorus and nitrogen mineralisation. Together, our metaproteomic assessment of the ‘active’ plant microbiome at the field-scale demonstrates the importance of moving past a genomic assessment of the plant microbiome in order to determine ecologically important plant-microbe interactions underpinning plant health.
Project description:Advances in DNA sequencing technologies has drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Here, we combined our recently developed protein extraction method and an iterative bioinformatics pipeline to enable the capture and identification of extracellular proteins (metaexoproteomics) synthesised in the rhizosphere of Brassica spp. We first validated our method in the laboratory by successfully identifying proteins related to a host plant (Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients in P. putida. Next, we analysed natural field-soil microbial communities associated with Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics, 1882 proteins were identified across bulk and rhizosphere samples. Meta-exoproteomics identified a clear shift (p<0.001) in the metabolically active fraction of the soil microbiota responding to the presence of B. napus roots that was not apparent in the composition of the total microbial community (metagenome). This metabolic shift was associated with the stimulation of rhizosphere-specialised bacteria, such as Gammaproteobacteria, Betaproteobacteria and Flavobacteriia and the upregulation of plant beneficial functions related to phosphorus and nitrogen mineralisation. Together, our metaproteomic assessment of the ‘active’ plant microbiome at the field-scale demonstrates the importance of moving past a genomic assessment of the plant microbiome in order to determine ecologically important plant-microbe interactions underpinning plant health.
Project description:Advances in DNA sequencing technologies has drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Here, we combined our recently developed protein extraction method and an iterative bioinformatics pipeline to enable the capture and identification of extracellular proteins (metaexoproteomics) synthesised in the rhizosphere of Brassica spp. We first validated our method in the laboratory by successfully identifying proteins related to a host plant (Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients in P. putida. Next, we analysed natural field-soil microbial communities associated with Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics, 1882 proteins were identified across bulk and rhizosphere samples. Meta-exoproteomics identified a clear shift (p<0.001) in the metabolically active fraction of the soil microbiota responding to the presence of B. napus roots that was not apparent in the composition of the total microbial community (metagenome). This metabolic shift was associated with the stimulation of rhizosphere-specialised bacteria, such as Gammaproteobacteria, Betaproteobacteria and Flavobacteriia and the upregulation of plant beneficial functions related to phosphorus and nitrogen mineralisation. Together, our metaproteomic assessment of the ‘active’ plant microbiome at the field-scale demonstrates the importance of moving past a genomic assessment of the plant microbiome in order to determine ecologically important plant-microbe interactions underpinning plant health.
Project description:Interactions between plants and each neighboring microbial species are fundamental building blocks that collectively determine the structure and function of the plant microbiota, but the molecular basis of such interactions is poorly characterized. Here, we monocolonized Arabidopsis leaves with nine plant-associated bacteria from all major phyla of the plant microbiota and profiled co-transcriptomes of plants and bacteria. These strains elicited quantitatively different plant transcriptional responses including typical pattern-triggered immunity responses. Genes of non-pathogenic bacteria involved in general metabolism and energy production were commonly suppressed in planta in contrast to a virulent pathogen. Various nutrient acquisition pathways that are frequently encoded in the genomes of plant-associated bacteria were induced in planta in a strain-specific manner, shedding light on bacterial adaptation to the plant environment and identifying a potential driving force of niche separation. Integrative analyses of plant and bacterial transcriptomes suggested that the transcriptional reprogramming of plants is largely uncoupled from that of bacteria at an early stage of interactions. This study provides insights into how plants discriminate among bacterial strains and sets the foundation for in-depth mechanistic dissection of plant-microbiota interactions.
Project description:The ultimate aim is see if rhizosphere microbiota are influenced by changes in root exudate composition resulting from abiotic stress. The abiotic variables we are focusing on at this stage are salinity, temperature and pH. This can be divided into two questions: (a) how do plant exudates change in response to abiotic stress, and (b) how do these changes influence bacteria. In order to test this we will produce plant exudates under controlled stressed conditions, measure their composition and measure bacterial growth in these exudates. Data has also been produced from synthetic community experiments comparing the community composition under a variety of controlled stress conditions (temperature, salinity, pH, and phosphate).
The work (proposal:https://doi.org/10.46936/10.25585/60000944) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.