Project description:To examine the heterogeneity and dynamic crosstalk of human liver cells, ~18,000 freshly isolated human liver cells from 6 donors were profiled using the 10x Genomics Chromium platform.
Project description:Independent of their inflammatory phenotype, macrophages are key orchestrators of hepatic metabolism. Non-alcoholic fatty liver disease (NAFLD) often occurs in obese individuals and is among the most common causes of cirrhosis, the terminal chronic liver disease that may necessitate liver transplantation. While multiple populations of macrophages have been described in the human liver, their function and turnover in obese patients at high risk of developing NAFLD and cirrhosis is currently unknown. Herein we identified a specific human population of resident liver myeloid cells that protects against the metabolic impairment associated with obesity. By studying the turnover of liver myeloid cells in individuals undergoing liver transplantation using markers of donor-recipient mismatch, we made the novel discovery that liver myeloid cell turnover differs between humans and mice. Using single cell techniques and flow cytometry we determined that the proportion of the protective resident liver myeloid cells, denoted liver myeloid cells 2 (LM2), decreases during obesity. Functional validation approaches using human 2D and 3D cultures revealed that the presence of LM2 ameliorates the oxidative stress associated with obese conditions. Our study indicates that resident myeloid cells could be a therapeutic target to decrease the oxidative stress associated with NAFLD.
Project description:Single cell RNA sequencing of liver cells enriched for Non-Parenchymal cells (NPCs) to see the percentage of humanizaton, the gene signature and the heterogeneity of most types of human NPCs in a humanized liver.
Project description:The liver plays a critical role in both immune defense and tolerance in the body. The liver-resident immune cells (LrICs) determine the immune properties, but the unique composition and heterogeneity of these cells are incompletely understood. Here, we dissect the diversity of LrICs by a comprehensive transcriptomic profiling using the unbiased single-cell RNA-sequencing (scRNA-seq). A total of 70, 706 of CD45+ immune cells from the paired liver perfusion, spleen and peripheral blood as references were profiled. We identified more than 30 discrete cell populations comprising 13 of T and NK cell, 7 of B cell, 4 of plasma cell, and 8 of myeloid cell subsets in human liver and donor-paired spleen and blood, and characterized their tissue distribution, gene expression and functional modules. Especially, four of CXCR6+ T and NK cell subsets were found to be present preferentially in the liver, where they manifested heterogeneity, distinct function and prominent homeostatic proliferation. We propose a universal category system of T and NK cells based on distinct chemokine receptors, confirmed subsequently by phenotype, transcriptional factors and functionality. We also identified adaptive changes by the spleen and liver-derived monocyte and macrophage populations. Finally, we give a global glimpse on B cell and plasma cell subsets in human spleen and liver. We, therefore, reveal the heterogeneity and functional diversity of LrICs in human. This study presents comprehensively the landscape of LrICs and will enable further study on their roles in various human diseases.
Project description:The overall purpose of this study is to describe the cellular composition of the human colon and its gene expression using scRNAseq and scATACseq methods. This will potentially provide is with a detailed map of the colon aiding our understanding of how diseases of the colon develop as well as the colons influence on systemic diseases such as type II diabetes.