Project description:Benthic diatoms dominate primary production in marine subtidal and intertidal environments. Their extraordinary species diversity and ecological success is thought to be linked with their predominantly heterothallic sexual reproduction. Little is known about pheromone involvement during mating of pennate diatoms. Here we describe pheromone guided mating in the coastal raphid diatom Cylindrotheca closterium. We show that the two mating types (mt+ and mt-) have distinct functions. Similar to other benthic diatoms, mt+ cells are searching for the mt- cells to pair. To enhance mating efficiency mt- exudes an attraction pheromone which we proved by establishing a novel capillary assay. Further, two more pheromones produced by mt- promote the sexual events. One arrests the cell cycle progression of mt+ while the other induces gametogenesis of mt+. We suggest that C. closterium shares a functionally similar pheromone system with other pennate diatoms like Seminavis robusta and Pseudostaurosira trainorii which synchronize sexual events and mate attraction. Remarkably, we found no evidence of mt+ producing pheromones, which differentiates C. closterium from other pennates and suggests a less complex pheromone system in C. closterium.
Project description:The aim of the experiment was to study the gene expression changes occurring when cells of the diatom Skeletonema marinoi undergo sexual reproduction. In this species, sex can be induced by an environmental trigger, specifically a change in salinity of the cultivation media. In diatoms the unique mode of cell division with unequal inheritance of the rigid cell wall components determines a progressive cell size reduction as cells divide. Large cells above a given size threshold are not competent for sex, on the other hand small cells, under appropriate conditions, can undergo sexual reproduction. RNA-seq included three experimental conditions: a) large cells above the sexualization size threshold, grown at standard salinity (control condition: no sex, no salinity stress); b) large cells above the sexualization size threshold transferred to higher salinity (treatment 1: no sex, salinity stress); c) small cells below the sexualization size threshold transferred to higher salinity (treatment 2: sex, salinity stress).
Project description:Gibel carp (Carassius gibelio) is a cyprinid fish that originated in eastern Eurasia and is considered as invasive in European freshwater ecosystems. The populations of gibel carp in Europe are mostly composed of asexually reproducing triploid females (i.e., reproducing by gynogenesis) and sexually reproducing diploid females and males. Although some cases of coexisting sexual and asexual reproductive forms are known in vertebrates, the molecular mechanisms maintaining such coexistence are still in question. Both reproduction modes are supposed to exhibit evolutionary and ecological advantages and disadvantages. To better understand the coexistence of these two reproduction strategies, we performed transcriptome profile analysis of gonad tissues (ovaries), and studied the differentially expressed reproduction-associated genes in sexual and asexual females. We used high-throughput RNA sequencing to generate transcriptomic profiles of gonadal tissues of triploid asexual females and males, diploid sexual males and females of gibel carp, as well as diploid individuals from two closely-related species, C. auratus and Cyprinus carpio. Using SNP clustering, we showed the close similarity of C. gibelio and C. auratus with a basal position of C. carpio to both Carassius species. Using transcriptome profile analyses, we showed that many genes and pathways are involved in both gynogenetic and sexual reproduction in C. gibelio; however, we also found that 1500 genes, including 100 genes involved in cell cycle control, meiosis, oogenesis, embryogenesis, fertilization, steroid hormone signaling and biosynthesis were differently expressed in the ovaries of asexual and sexual females. We suggest that the overall downregulation of reproduction-associated pathways in asexual females, and their maintenance in sexual ones, allow for their stable coexistence, integrating the evolutionary and ecological advantages and disadvantages of the two reproductive forms. However, we showed that many sexual-reproduction-related genes are maintained and expressed in asexual females, suggesting that gynogenetic gibel carp retains the genetic toolkits for meiosis and sexual reproduction. These findings shed new light on the evolution of this asexual and sexual complex.
2024-05-17 | GSE254010 | GEO
Project description:Anti-inflammatory compounds from the diatom Cylindrotheca closterium