Project description:Divergent functions of two clades of flavodoxin in diatoms mitigate oxidative stress and iron limitation Thalassiosira pseudonana and 4 open-ocean diatoms were subjected to iron limitation or short-term oxidative stress (hydrogen peroxide). mRNA profiles of T. pseudonana (CCMP1335), Thalassiosira oceanica (CCMP1005), Amphora coffeaeformis (CCMP1405), Chaetoceros sp. (CCMP199), and Cylindrotheca closterium (CCMP340).
Project description:Benthic diatoms dominate primary production in marine subtidal and intertidal environments. Their extraordinary species diversity and ecological success is thought to be linked with their predominantly heterothallic sexual reproduction. Little is known about pheromone involvement during mating of pennate diatoms. Here we describe pheromone guided mating in the coastal raphid diatom Cylindrotheca closterium. We show that the two mating types (mt+ and mt-) have distinct functions. Similar to other benthic diatoms, mt+ cells are searching for the mt- cells to pair. To enhance mating efficiency mt- exudes an attraction pheromone which we proved by establishing a novel capillary assay. Further, two more pheromones produced by mt- promote the sexual events. One arrests the cell cycle progression of mt+ while the other induces gametogenesis of mt+. We suggest that C. closterium shares a functionally similar pheromone system with other pennate diatoms like Seminavis robusta and Pseudostaurosira trainorii which synchronize sexual events and mate attraction. Remarkably, we found no evidence of mt+ producing pheromones, which differentiates C. closterium from other pennates and suggests a less complex pheromone system in C. closterium.
Project description:Coastal waters are expected to undergo severe warming in the coming decades. Very little is known about how diatoms, the dominant primary producers in these habitats, will cope with these changes. We investigated the thermal niche of Cylindrotheca closterium, a widespread benthic marine diatom, using 24 strains collected over a wide latitudinal gradient. A multi-marker phylogeny in combination with a species delimitation approach shows that C. closterium represents a (pseudo)cryptic species complex, and this is reflected in distinct growth response patterns in terms of optimum growth temperature, maximum growth rate, and thermal niche width. Strains from the same clade displayed a similar thermal response, suggesting niche conservation between closely related strains. Due to their lower maximum growth rate and smaller thermal niche width, we expect the polar species to be particularly sensitive to warming, and, in the absence of adaptation, to be replaced with species from lower latitudes.