Project description:Klinefelter syndrome (KS) is the most prevalent aneuploidy in males and is characterized by an extra copy of the X chromosome,while the non-mosaic form of KS with 47,XXY karyotype is the most frequent (80-90%), less common non-disjunction events during the early mitotic division of the zygote result in mosaic forms of KS (47,XXY/46,XY). Here, using a paradigmatic cohort of KS-inducible pluripotent stem cells (iPSCs) carrying 47,XXY karyotypes we present the first iPSC-based disease-modeling study performed on KS patients from Saudi Arabia. We profiled the transcriptome of these Saudi KS-iPSCs, virtually characterized by subduedcgenetic backgrounds. Moreover, we performed a comparative transcriptomic analysis to assess the aberrant gene expression profile due to X dosage imbalance in four Saudi and five European and North American 47,XXY patients-derived iPSCs from our previously published study on KS and high-grade sex chromosome aneuploidies (SCAs). We identified a transcriptomic signature including ten PAR1 genes and thirteen non-PAR escape genes consistently upregulated in KS compared to 46,XY controls in both groups, as well as 193 consistenty disregulated autosomal genes. Our results indicate that the global transcriptional impact of X chromosome overdosage in KS is largely attributable to X-linked genes escaping X inactivation, regardless of the geographical area of origin, ethnicity, and genetic background.
Project description:Transcriptomic analysis of fresh breast cancer tissue versus normal tissues. The Study comprising 45 Saudi-Arabian subjects was designed to take advantage of transcriptomics to prospectively explore the roles of lifestyle and genetic susceptibility in the occurrence of breast cancer.
Project description:The screening of 741,000 variants in 420 individuals from Arabian Peninsula (100 from Saudi Arabia, 100 from Yemen, 100 from Oman and 120 from UAE) and 80 individuals from Iran.
Project description:Venomous animals have traditionally been studied from a proteomic (but also transcriptomic) perspective, often overlooking the study of venom from a genomic point of view until recently. The rise of genomics has led to an increase in the number of reference genomes for non-model organisms, including venomous taxa, enabling new questions on venom evolution from a genomic context. Although venomous snakes are the fundamental model system in venom research, the number of high-quality reference genomes in the group remains limited. In this study, we present a high-quality chromosome-level reference genome for the Arabian horned viper (Cerastes gasperettii), a highly venomous snake native to the Arabian Peninsula. Our highly-contiguous genome allowed us to explore macrochromosomal rearrangements within the Viperidae family, as well as across squamate reptile evolution. Furthermore, we identified a total of ten different toxins conforming the venom’s core, in line with our proteomic results. We also compared microsyntenic changes in the main toxin gene clusters with those of other venomous snake species, highlighting the pivotal role of gene duplication and loss in the emergence and diversification of the two main toxin families for Cerastes gasperettii. Using Illumina data, we reconstructed the demographic history and genome-wide diversity of the species, revealing how historical aridity likely drove population expansions. Finally, this study highlights the importance of using long-read sequencing as well as chromosome-level reference genomes to disentangle the origin and diversification of toxin families in venomous species.
Project description:Venomous animals have traditionally been studied from a proteomic (but also transcriptomic) perspective, often overlooking the study of venom from a genomic point of view until recently. The rise of genomics has led to an increase in the number of reference genomes for non-model organisms, including venomous taxa, enabling new questions on venom evolution from a genomic context. Although venomous snakes are the fundamental model system in venom research, the number of high-quality reference genomes in the group remains limited. In this study, we present a high-quality chromosome-level reference genome for the Arabian horned viper (Cerastes gasperettii), a highly venomous snake native to the Arabian Peninsula. Our highly-contiguous genome allowed us to explore macrochromosomal rearrangements within the Viperidae family, as well as across squamate reptile evolution. Furthermore, we identified a total of ten different toxins conforming the venom’s core, in line with our proteomic results. We also compared microsyntenic changes in the main toxin gene clusters with those of other venomous snake species, highlighting the pivotal role of gene duplication and loss in the emergence and diversification of the two main toxin families for Cerastes gasperettii. Using Illumina data, we reconstructed the demographic history and genome-wide diversity of the species, revealing how historical aridity likely drove population expansions. Finally, this study highlights the importance of using long-read sequencing as well as chromosome-level reference genomes to disentangle the origin and diversification of toxin families in venomous species.
Project description:Transcriptomic analysis of fresh breast cancer tissue versus normal tissues. The Study comprising 45 Saudi-Arabian subjects was designed to take advantage of transcriptomics to prospectively explore the roles of lifestyle and genetic susceptibility in the occurrence of breast cancer. Total RNA isolated from 45 surgically resected breast cancer tissues and 8 healthy breast tissues (3 from Affymetrix) and purified, labeled, and hybridized to Affymetrix Human Gene 1.0 ST Array.