Project description:Investigation of whole genome gene expression level changes in a Vibrio cholerae O395N1 delta-nqrA-F mutant, compared to the wild-type strain. Total RNA recovered from wild-type cultures of VIbrio cholerae O395N1 and its nqrA-F mutant strain. Each chip measures the expression level of 3,835 genes from Vibrio cholerae O1 biovar eltor str. N16961 with twenty average probes/gene, with five-fold technical redundancy.
Project description:We exposed wild-type Vibrio cholerae E7496, multiple Vibrio cholerae virulence factor deleted genes with intact hemolysin A gene [CVD109] and without hemolysin A gene [CVD110] in E7946, and E.coli OP50 to wild-type C.elegans N2 for 18 hours. We used microarrays to detail the global gene expression and identified distinct classes of up-regulated and down-regulated genes during this process. C. elegans were exposed to Vibrio cholerae and E.coli then hybridization on Affymetrix microarray chips.
Project description:We used RNA-seq to determine transcriptional profiles of whole guts or IPCs isolated from guts infected with wild type or type VI secretion system deficient Vibrio cholerae. We found significant differences between guts and progenitor cells infected wild type or type VI secretion system deficient Vibrio cholerae.
Project description:We exposed wild-type Vibrio cholerae E7496, multiple Vibrio cholerae virulence factor deleted genes with intact hemolysin A gene [CVD109] and without hemolysin A gene [CVD110] in E7946, and E.coli OP50 to wild-type C.elegans N2 for 18 hours. We used microarrays to detail the global gene expression and identified distinct classes of up-regulated and down-regulated genes during this process.
Project description:Tissue Transcriptomics of mice at different stages of Vibrio cholerae infection and possible RNA-Seq of Vibrio cholerae at the same time pointsThese data are part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
Project description:In presence of high concentrations of L-arabinose, Vibrio cholerae enters into a non-proliferative state. In V. cholerae, when L-arabinose in present into the media, it is incorporated and metabolized through the galactose pathway. In the present datasets we show that in presence of L-arabinose, transposon insertions in the galactose pathway confer a resistance to the detrimental effect of L-arabinose.
Project description:We report the genome-wide analysis from chromatin immunoprecipitated DNA (ChIP-sequencing) at very high resolution of the DNA binding pattern of ParBVc1 on the chromosome of Vibrio cholerae.
Project description:Horizontally acquired genetic elements (HGEs) plays a major for determination of virulence, antimicrobial resistance, adaptation and evolution in pathogenic bacteria. Conserved integrative mobile genetic elements (MGEs) of Vibrio cholerae contribute in the disease development, antimicrobial resistance and metabolic functions. To understand the dynamics of integrative MGEs and cross talk between MGEs and core genome, engineered genome of V. cholerae was monitored in the presence and absence of horizontally acquired genetic elements. Deletion of more than 250 revealed that CTX contributes to the essentiality of SOS response master regulator LexA in V. cholerae. Also, he core genome encoded RecA helps CTX to bypass the host immunity and replicate in the host cell in the presence of similar prophage in the host chromosome. Finally, our multiomics data reveal importance of MGEs in modulating the level of cellular proteome and metabolome in V. cholerae. This study for the first time engineered the genome of V. cholerae strains to eliminate all the GIs, ICE and prophages from their genome and revealed new interactions between core and acquired genomes. The engineered strain could be a potential candidate for understanding evolution of cholera pathogen and development of therapeutics.