Project description:In this study, we investigated the impact of industrial antifoam agents on the physiology and transcriptome of the industrial ethanol Saccharomyces cerevisiae strain CAT-1. We showed that under industrial molasses fermentations similar to the ones used for ethanol production in Brazil, antifoam agents had detrimental effects on productivity, viability and lead to increased stress responses in yeast.
Project description:Lactobacillus rhamnosus GG has become one of the most widely marketed and studied probiotic strains. Several genes important for probiotic function have been identified, including the spaCBA-srtC1 gene cluster encoding pili, which have been shown to be important for certain of its probiotic properties. The spaCBA-srtC1 gene cluster has been reported to be unstable in L. rhamnosus GG isolated from liquid dairy products and therefore the present study examined the L. rhamnosus GG genome stability throughout an industrial production process from the original deposit to the freeze-dried products including intermediate fermentations and single colony isolates prepared from these samples. The results showed that the original deposit was identical to the reference ATCC and that the genome sequence stayed fully intact throughout the production process. No SNPs or larger genomic changes occurred in any of the samples throughout the production process and the spaCBA-srtC1 gene locus was fully conserved and intact in all 31 samples examined. In addition, phenotypic expression of pili was demonstrated using immune-gold labelling EM. The images showed that pili production was preserved throughout the production process and that the number of pili were consistent in all batches. The present study extends the scope of previous findings to an industrial setting and shows that the region around the spaCBA-srtC1 cluster exhibits high stability in L. rhamnosus GG in an industrial production process.
Project description:Our study involves a transcriptomic approach to the analysis of industrial yeast metabolism. Historically, among the hundreds of yeast species, Saccharomyces cerevisiae has played an important role in scientific investigations and industrial applications, and it is universally acknowledged as one of the model systems for eukaryotic organisms. Yeast is also an important component of the wine fermentation process and determines various attributes of the final product. Our research takes a holistic approach to the improvement of industrial yeast strains by integrating large data sets from various yeast strains during fermentation. This means that analysis can be done in such a way as to co-evaluate several parameters simultaneously to identify points of interest and target genes for metabolic engineering. Eventually we hope to construct an accurate information matrix and a more complete cellular map for the fermenting yeast. This will enable accurate model-building for industrial yeast and facilitated the design of intelligent yeast improvement strategies which can be applied via traditional avenues of molecular biology.