Project description:Identification of patterns of sex-biased expression in (shared) vegetative tissues before and after sexual maturity in Mercurialis annua
Project description:A selection experiment has been set that selects females Mercurialis annua for increased allocation in male functions by depriving selected populations of all males. This resulted in a drastic phenotypic shift in sex allocation in females of the selected lines. The present RNA sequencing of control and selected lines after four generations of selection permits us to track the expression levels of previously identified male- and female-biased genes in females of the selected lines.
Project description:Artemisia annua is well known for biosynthesizing artemisinin, which is the primary therapeutic approach against malaria. It was reported that treatment with leaf of A. annua showed better effect and less tendency of developing drug resistance than purified artemisinin, suggesting other components in A. annua may contribute to the therapeutic efficacy. Here, we conducted a global proteomic profiling of A. annua with identification of a total of 13,403 proteins based on the genome sequence annotation database. Furthermore, we generated a spectral library to perform quantitative proteomic analysis using data independent acquisition mass spectrometry (DIA-MS). Specifically, we comprehensively quantified and compared proteins between two chemotypes that produce high (HAP) and low (LAP) artemisinin content, respectively. 182 proteins were identified with abundance significantly different between these two chemotypes. Overall, our current study globally identified the proteome of A. annua and quantitatively compared the targeted sub-proteomes between the two cultivars of HAP and LAP, providing systematic information on metabolic pathways of A. annua and facilitating identification of good chemotypes for producing anti-malaria compounds.
Project description:Artemisia annua is known to produce the antimalarial phytomolecule artemisinin. The seedling and mature leaf of the plant represent two contrasting tissues in terms of their artemisinin content. The major objective of the present study was to use a small-scale (750 target genes) microarray of A. annua for identification of genes that are differentially expressed in the seedling and mature leaf tissues of the plant.