Project description:Archaeological dental calculus has emerged as a rich source of ancient biomolecules, including proteins. Previous analyses of proteins extracted from ancient dental calculus revealed the presence of the dietary milk protein β-lactoglobulin, providing direct evidence of dairy consumption in the archaeological record. However, the potential for calculus to preserve other food-related proteins has not yet been systematically explored. Here we analyse shotgun metaproteomic data from 100 archaeological dental calculus samples ranging from the Iron Age to the post-medieval period (8thC BC - 19thC AD) in Britain, as well as dental calculus from contemporary dental patients and recently deceased individuals, to characterise the range and extent of dietary proteins preserved in dental calculus. In addition to milk proteins, we detected proteomic evidence of foodstuffs such as cereals and plant products, as well as the digestive enzyme salivary amylase. We discuss the importance of optimized protein extraction methods, data analysis approaches, and authentication strategies in the identification of dietary proteins from archaeological dental calculus. Our ability to detect dietary proteins, although limited, demonstrates the potential of these methods to robustly identify foodstuffs in the archaeological record that are under-represented due to their poor preservation.
Project description:Dental calculus is becoming a crucial material in the study of past populations, with increasing interest in its proteomic and genomic content. Here we suggest further development of protocol for analysis of ancient proteins and a combined approach for subsequent ancient DNA extraction. We tested the protocol on recent teeth. We then applied the optimised protocol to ancient teeth to limit the destruction of calculus, as it is a precious and irreplaceable source of dietary, microbiological, and ecological information in the archaeological context. Finally, the applicability of the protocol was proven on samples of ancient calculus.
Project description:This study investigated the consumption of milk products in the archaeological record, utilizing human dental calculus as a reservoir of dietary proteins from archaeological samples from across Eurasia. Protein extraction and generation of tryptic peptides from dental calculus was performed using a filter-aided sample preparation (FASP) protocol, modified for ancient samples, on 92 samples of archaeological dental calculus. Samples were extracted at three laboratories; the Functional Genomics Centre Zürich (FGCZ), the Centre for GeoGenetics at the National History Museum of Denmark, and BioArCh at the University of York. Sample extracts were sequenced (LC-MS/MS) using an LTQ-Orbitrap Velos (FGCZ), a Q-Exactive Hybrid Quadrupole Orbitrap and an LTQ-Orbitrap Elite (Central Proteomics Facility, Target Discovery Institute, Oxford).
Project description:This study investigated the consumption of milk products in the archaeological record, utilizing human dental calculus as a reservoir of dietary proteins from archaeological samples from across Eurasia. Protein extraction and generation of tryptic peptides from dental calculus was performed using a filter-aided sample preparation (FASP) protocol, modified for ancient samples, on 92 samples of archaeological dental calculus. Samples were extracted at three laboratories; the Functional Genomics Centre Zürich (FGCZ), the Centre for GeoGenetics at the National History Museum of Denmark, and BioArCh at the University of York. Sample extracts were sequenced (LC-MS/MS) using an LTQ-Orbitrap Velos (FGCZ), a Q-Exactive Hybrid Quadrupole Orbitrap and an LTQ-Orbitrap Elite (Central Proteomics Facility, Target Discovery Institute, Oxford).
Project description:This study investigated the consumption of milk products in the archaeological record, utilizing human dental calculus as a reservoir of dietary proteins from archaeological samples from across Eurasia. Protein extraction and generation of tryptic peptides from dental calculus was performed using a filter-aided sample preparation (FASP) protocol, modified for ancient samples, on 92 samples of archaeological dental calculus. Samples were extracted at three laboratories; the Functional Genomics Centre Zürich (FGCZ), the Centre for GeoGenetics at the National History Museum of Denmark, and BioArCh at the University of York. Sample extracts were sequenced (LC-MS/MS) using an LTQ-Orbitrap Velos (FGCZ), a Q-Exactive Hybrid Quadrupole Orbitrap and an LTQ-Orbitrap Elite (Central Proteomics Facility, Target Discovery Institute, Oxford).