Project description:This study used droplet-based snATAC-seq to profile the chromatin accessibility landscape of 19,204 nuclei in the opossum (Monodelphis domestical) cerebellum across two developmental stages (postnatal day 21 and adult). The study included two biological replicates per stage, one from each sex, and an additional adult sample enriched for white matter. Cerebelli were dissected in two halves, nuclei were extracted from one half and profiled using 10x single-cell ATAC reagent kit (v1.1) and a Chromium controller. The white matter enriched sample was dissected from coronal cerebellum slices. Libraries were sequenced using paired-reads on Illumina NextSeq 550 and initial data processing was performed using Cellranger ATAC (1.1).
Project description:This experiment contains the subset of data corresponding to gray short-tailed opossum RNA-Seq data from experiment E-GEOD-30352 (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-30352/), which goal is to understand the dynamics of mammalian transcriptome evolution. To study mammalian transcriptome evolution at high resolution, we generated RNA-Seq data (∼3.2 billion Illumina Genome Analyser IIx reads of 76 base pairs) for the polyadenylated RNA fraction of brain (cerebral cortex or whole brain without cerebellum), cerebellum, heart, kidney, liver and testis (usually from one male and one female per somatic tissue and two males for testis) from nine mammalian species: placental mammals (great apes, including humans; rhesus macaque; mouse), marsupials (gray short-tailed opossum) and monotremes (platypus). Corresponding data (∼0.3 billion reads) were generated for a bird (red jungle fowl, a non-domesticated chicken) and used as an evolutionary outgroup.
Project description:This study used droplet-based snATAC-seq to profile the chromatin accessibility landscape of 91,922 nuclei in the mouse cerebellum across eleven developmental stages, from the beginning of neurogenesis (e10.5) till adulthood (P63). The study included two biological replicates per stage, one from each sex. Cerebelli were dissected as whole or in two halves, nuclei were extracted and profiled using 10x single-cell ATAC reagent kit (v1.0) and a Chromium controller. Libraries were sequenced using paired-reads on Illumina NextSeq 550 and initial data processing was performed using Cellranger ATAC (1.1).
Project description:Single-nucleus RNA sequencing (snRNA-seq) was used to profile the transcriptome of 9,926 nuclei in opossum adult testis. This dataset includes three samples from three different individuals. This dataset is part of a larger evolutionary study of adult testis at the single-nucleus level (97,521 single-nuclei in total) across mammals including 10 representatives of the three main mammalian lineages: human, chimpanzee, bonobo, gorilla, gibbon, rhesus macaque, marmoset, mouse (placental mammals); grey short-tailed opossum (marsupials); and platypus (egg-laying monotremes). Corresponding data were generated for a bird (red junglefowl, the progenitor of domestic chicken), to be used as an evolutionary outgroup.
Project description:This experiment contains the subset of data corresponding to rhesus macaque RNA-Seq data from experiment E-GEOD-30352 (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-30352/), which goal is to understand the dynamics of mammalian transcriptome evolution. To study mammalian transcriptome evolution at high resolution, we generated RNA-Seq data (∼3.2 billion Illumina Genome Analyser IIx reads of 76 base pairs) for the polyadenylated RNA fraction of brain (cerebral cortex or whole brain without cerebellum), cerebellum, heart, kidney, liver and testis (usually from one male and one female per somatic tissue and two males for testis) from nine mammalian species: placental mammals (great apes, including humans; rhesus macaque; mouse), marsupials (gray short-tailed opossum) and monotremes (platypus). Corresponding data (∼0.3 billion reads) were generated for a bird (red jungle fowl, a non-domesticated chicken) and used as an evolutionary outgroup.
Project description:This experiment contains the subset of data corresponding to mouse RNA-Seq data from experiment E-GEOD-30352 (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-30352/), which goal is to understand the dynamics of mammalian transcriptome evolution. To study mammalian transcriptome evolution at high resolution, we generated RNA-Seq data (∼3.2 billion Illumina Genome Analyser IIx reads of 76 base pairs) for the polyadenylated RNA fraction of brain (cerebral cortex or whole brain without cerebellum), cerebellum, heart, kidney, liver and testis (usually from one male and one female per somatic tissue and two males for testis) from nine mammalian species: placental mammals (great apes, including humans; rhesus macaque; mouse), marsupials (gray short-tailed opossum) and monotremes (platypus). Corresponding data (∼0.3 billion reads) were generated for a bird (red jungle fowl, a non-domesticated chicken) and used as an evolutionary outgroup.
Project description:This experiment contains the subset of data corresponding to human RNA-Seq data from experiment E-GEOD-30352 (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-30352/), which goal is to understand the dynamics of mammalian transcriptome evolution. To study mammalian transcriptome evolution at high resolution, we generated RNA-Seq data (∼3.2 billion Illumina Genome Analyser IIx reads of 76 base pairs) for the polyadenylated RNA fraction of brain (cerebral cortex or whole brain without cerebellum), cerebellum, heart, kidney, liver and testis (usually from one male and one female per somatic tissue and two males for testis) from nine mammalian species: placental mammals (great apes, including humans; rhesus macaque; mouse), marsupials (gray short-tailed opossum) and monotremes (platypus). Corresponding data (∼0.3 billion reads) were generated for a bird (red jungle fowl, a non-domesticated chicken) and used as an evolutionary outgroup.