Project description:The hormonal contraceptive medroxyprogesterone acetate (MPA) is associated with increased risk of human immunodeficiency virus (HIV), via incompletely understood mechanisms. Increased diversity in the vaginal microbiota modulates genital inflammation and is associated with increased HIV-1 acquisition. However, the effect of MPA on diversity of the vaginal microbiota is relatively unknown. In a cohort of female Kenyan sex workers, negative for sexually transmitted infections (STIs), with Nugent scores <7 (N=58 of 370 screened), MPA correlated with significantly increased diversity of the vaginal microbiota as assessed by 16S rRNA gene sequencing. MPA was also significantly associated with decreased levels of estrogen in the plasma, and low vaginal glycogen and α-amylase, factors implicated in vaginal colonization by lactobacilli, bacteria that are believed to protect against STIs. In a humanized mouse model, MPA treatment was associated with low serum estrogen, low glycogen and enhanced HIV-1 susceptibility. The mechanism by which the MPA mediated changes in the vaginal microbiota may contribute to HIV-1 susceptibility in humans appears to be independent of inflammatory cytokines and/or activated T cells. Altogether, these results suggest MPA-induced hypo-estrogenism may alter key metabolic components that are necessary for vaginal colonization by certain bacterial species including lactobacilli, and allow for greater bacterial diversity in the vaginal microbiota.
Project description:Pre-exposure chemoprophylaxis using antiretroviral agents is a promising strategy for the prevention of sexual HIV transmission in women. Molecular transporters in the human vaginal tract may play a pivotal role in determining drug disposition and, consequently, pharmacodynamic outcomes in these efforts. Little is known, however, on the expression of these transporters in vaginal tissues, representing a critical knowledge gap. Our study analyzed the genome-wide transcriptome in 44 vaginal tissue samples from 6 reproductive-age women undergoing gynecologic surgeries. The genome-wide transcriptome in 44 vaginal tissue samples from 6 reproductive-age women (20-56 years old) undergoing gynecologic surgeries was measured.
Project description:Streptococcus pyogenes (Group A Strep, GAS) is a serious human pathogen with the ability to colonize mucosal surfaces such as the nasopharynx and vaginal tract, often leading to infections such as pharyngitis and vulvovaginitis. We present genome-wide RNASeq data showing the transcriptomic changes GAS undergoes during vaginal colonization. These data reveal that the regulon controlled by MtsR, a master metal regulator, is activated during vaginal colonization. This regulon includes two genes highly expressed during vaginal colonization, hupYZ. Here we show that HupY binds heme in vitro, affects intracellular concentrations of iron, and is essential for proper growth of GAS using hemoglobin or serum as the sole iron source. HupY is also important for murine vaginal colonization of both GAS and the related vaginal colonizer and pathogen, Streptococcus agalactiae (Group B Strep, GBS). These data provide essential information on the link between metal regulation and mucosal colonization in both GAS and GBS.
Project description:Streptococcus agalactiae (Group B Streptococcus, GBS) can colonize the human vaginal tract leading to both superficial and serious infections in adults and neonates. To study bacterial colonization of the reproductive tract in a mammalian system, we employed a murine vaginal carriage model. Using RNASeq, the transcriptome of GBS growing in vivo during vaginal carriage was determined. Over one-quarter of the genes in GBS were found to be differentially regulated during in vivo colonization as compared to laboratory cultures. A two-component system (TCS) homologous to the staphylococcal virulence regulator SaeRS was identified as being up-regulated in vivo. One of the SaeRS targets, pbsP, a proposed GBS vaccine candidate, was shown to be important for colonization of the vaginal tract. A component of vaginal lavage fluid acted as a signal to turn on pbsP expression via SaeRS. These data demonstrate the ability to quantify RNA expression directly from the murine vaginal tract and identify novel genes involved in vaginal colonization by GBS. They also provide more information about the regulation of an important virulence and colonization factor of GBS, pbsP, by the TCS SaeRS.
Project description:In this study, we further investigated the efficacy of using MRM-profiling of vaginal lipids to differentiate PND 2 vaginal swabs between gilts suckled by sow or fed milk replacer. Secondly, we tested the effect of a lard based supplement on vaginal lipid profiles of gilts.
Project description:Pelvic organ prolapse (POP) is a common multifactorial disease in a heterogeneous population of women. Due to this heterogeneity, the underlying molecular mechanisms contributing to the pathogenesis of POP are still unclear. We sought to identify dysregulated pathways by comparing gene expression profiles of prolapsed and non- prolapsed anterior vaginal wall tissue within the same patient. Biopsies were collected from 12 premenopausal women undergoing prolapse surgery (cystocele POP-Q stage ≥ 2). A full thickness anterior vaginal wall sample was taken from the POP site during anterior colporrhaphy. An additional sample was taken from the non-prolapsed apex of the anterior vaginal cuff. Micro-array analysis was performed using whole genome GE 4x44K microarrays. Beside a significance analysis of micro-array (SAM), also a visual cluster analysis was performed. 12 women with POP: 12 biopsies anterior vaginal wall (POP site) versus 12 biopies precervical anterior vaginal wall ( non POP site)
Project description:Stress urinary incontinence (SUI) greatly affects the daily life of numerous women and is closely related to a history of vaginal delivery and aging. We used vaginal balloon dilation to simulate vaginal birth injury in young and middle-aged rats to produce a SUI animal model, and found that young rats restored urethral structure and function well, but not the middle-aged rats. To identify the characteristics of cellular and molecular changes in the urethral microenvironment during the repair process of SUI. We profiled 51,690 individual female rat urethra cells from 24 and 48 weeks old, with or without simulated vaginal birth injury.