Project description:We report the transcriptomic changes in Salmonella Typhimurium exposed to sub-lethal sonophotocatalytic disinfection. The current data suggests that more than 120 genes are significantly expressed during the process. The genes associated with the flagellar assembly were found to be significantly up-regulated during the disinfection, which may have impacts on the phenotypic attributes of the bacteria.
Project description:Pristine groundwater is a highly stable environment with microbes adapted to dark, oligotrophic conditions. Input events like heavy rainfalls can introduce excess particulate organic matter including surface-derived microbes into the groundwater, hereby creating a disturbance to the groundwater microbiome. Some of the translocated bacteria are not able to thrive in groundwater and will form necromass. Here, we investigated the effects of necromass addition to the microbial community in fractured bedrock groundwater, using groundwater mesocosms as model systems. We followed the uptake of 13C-labeled necromass by the bacterial and eukaryotic groundwater community quantitatively and over time by employing a combined protein and DNA stable isotope probing approach. Necromass was rapidly depleted in the mesocosms within four days, accompanied by a strong decrease of Shannon diversity and an increase of bacterial 16S rRNA gene copy numbers by one order of magnitude. Species of Flavobacterium, Massilia, Rheinheimera, Rhodoferax and Undibacterium dominated the microbial community within two days and were identified as key players in necromass degradation, based on a 13C incorporation of > 90% in their peptides. Their proteomes showed various uptake and transport related proteins, and many proteins involved in metabolizing amino acids. After four and eight days of incubation, autotrophic and mixotrophic groundwater species of Nitrosomonas, Limnohabitans, Paucibacter and Acidovorax increased in abundance, with a 13C incorporation between 0.5 and 23%. Our data point towards a very fast and exclusive uptake of labeled necromass by a few specialists followed by a concerted action of groundwater microorganisms, including autotrophs presumably fueled by released, reduced nitrogen and sulfur compounds generated during necromass degradation.
Project description:Background. Bacteria of the Candidate Phyla Radiation (CPR), constituting about 25% of the bacterial biodiversity, are characterized by small cell size and patchy genomes without complete key metabolic pathways suggesting symbiotic life styles. Gracilibacteria (BD1-5) are part of the CPR branch, they possess alternate coded genomes and have two cultivated members that were shown to be microbial predators. However, besides genomic sampling, little is known about the lifestyle of Gracilibacteria, their temporal dynamics, and activity in natural ecosystems, and particularly groundwater where they have initially been genomically resolved. The current study was set out with the aim of investigating the metaproteogenome of Gracilibacteria as a function of time in the cold-water geyser Wallender Born in the Volcanic Eifel region in Germany, to estimate their activity in situ and discern expressed genes involved in their lifestyle. Results. We coupled genome-resolved metagenomics and metaproteomics to investigate a microbial community enriched in Gracilibacteria across a 12-day time-series. Groundwater was collected and sequentially filtered onto 0.2-μm and 0.1-μm filters to fraction CPR and other bacteria. Based on 670 Gbps of metagenomic data, 1129 different ribosomal protein S3 marker genes and 751 high-quality genomes (123 population genomes after dereplication), we identified dominant bacteria belonging to Galionellales and Gracilibacteria along with keystone microbes, low in genomic abundance but substantially contributing to proteomic abundance. Seven high-quality Gracilibacteria genomes showed typical limitations in their central metabolism but no co-occurrence to potential hosts. Their genomes encoded for a high number of proteins related to a predatory lifestyle, whose expression was detected in the proteome and included subunits related to type IV and type II secretion systems, as well as features related to cell-cell interactions and cell motility. Conclusion. We present a highly resolved analysis coupling metagenomics to metaproteomics for elucidating microbial dynamics of Gracilibacteria in groundwater. We posit that Gracilibacteria are successful microbial predators in this ecosystem potentially aiding in population control of this highly disturbed microbial community from the deep biosphere.
Project description:Gene expression microarrays were performed to investigate the molecular effects of exposure to environmental polluted groundwater. Zebrafish was treated with polluted waters collected from dumps located upstream and downstream a sanitary landfills. Gene expression profiling of zebrafish liver was analyzed after acute exposure to sampled waters.
Project description:Gene expression microarrays were performed to investigate the molecular effects of exposure to environmental polluted groundwater. Mice were treated with polluted waters collected from dumps located upstream and downstream a sanitary landfills. Gene expression profiling of mouse liver was analyzed after acute and chronic exposure to sampled waters.
Project description:In this study we linked the biological end point of genomic DNA damage from our quantitative, comparative disinfection by-product (DBP) database, with toxicogenomic analysis using a Super Array RT2 Profiler™ PCR Array containing primers for 84 genes related to human DNA damage and repair and 84 genes whose expression level is indicative of stress and toxicity.
Project description:The use of aqueous film-forming foams (AFFF) at fire-training areas (FTAs) has introduced into ground- and surface waters a complex mixture of per- and poly-fluorinated alkyl substances (PFAS). The toxicity of environmental PFAS mixtures to wildlife is not well understood and presents a knowledge gap that limits accurate risk assessment. To evaluate reproductive biomarker responses to complex environmental PFAS mixtures, we conducted a series of on-site experiments using flow-through mobile laboratories exposing fish to groundwater impacted by a legacy FTA and an adjacent reference site A 60K fathead minnow microarray was used to quantify gene expression patterns in the testis and liver of fish exposed to water from Fire Training Area 1 and 2 relative to a reference site.
Project description:The use of aqueous film-forming foams (AFFF) at fire-training areas (FTAs) has introduced into ground- and surface waters a complex mixture of per- and poly-fluorinated alkyl substances (PFAS). The toxicity of environmental PFAS mixtures to wildlife is not well understood and presents a knowledge gap that limits accurate risk assessment. To evaluate reproductive biomarker responses to complex environmental PFAS mixtures, we conducted a series of on-site experiments using flow-through mobile laboratories exposing fish to groundwater impacted by a legacy FTA and an adjacent reference site A 60K fathead minnow microarray was used to quantify gene expression patterns in the testis and liver of fish exposed to water from Fire Training Area 1 and 2 relative to a reference site.
Project description:Aquifer systems are composed of water flowing from surface recharge areas, to the subsurface and back to the surface in discharge regions. Groundwater habitats harbor a large microbial biomass and diversity, potentially contributing to surface aquatic ecosystems. Although this contribution has been widely studied in marine environments, very little is known about the connection between underground and surface microbial communities in freshwater settings. Therefore, in this study, we used amplicon sequencing to analyze the archaeal, bacterial, and eukaryotic community diversity and structure in groundwater and surface water samples, spanning the vast regions of the Laurentides and Lanaudières in the Quebec province (Canada). Our results show significant differences between subsurface and surface taxa; with more fungi, Amoebozoa, and chemolithoautotrophic prokaryotes involved in nitrogen-, sulfur-, and iron-cycling dominating the underground samples; while algae, ciliates, methanogens, and Actinobacteria dominate the surface discharge waters. Microbial source tracking suggested that only a small portion of the microbial communities in the groundwater contributed to the surface discharge communities. However, many taxa were shared between both habitats, with a large range of functional diversity, likely explaining their survival in both subsurface and surface water ecosystems.