Project description:Here we report metagenomic sequencing data in gut microbiota of autism spectrum disorders (ASD) compared with healthy volunteers (30 for ASD children and 30 for healthy controls, respectively). The genes changed in autistic subjects involved 1,312,364 analytes that compare to 1,335,835 analytes in healthy controls. The number of taxa in autistic subjects were significantly increased as compared to the healthy controls based on the phylum and genus level (P = 0.001). However, the number of species were significantly decreased in autistic subjects (P = 0.001).
Project description:We recruited 24 Mongolian volunteers,6 of which were T2D cases(sample T1-T6), 6 were prediabetes cases(sample P1-P6), and 12 were health cases(sample C1-C12). The metagenomic analysis of gut microbiota from the volunteers’ fecal samples was performed. We compared the microbial differences in the three groups, and analyzed the differences of the stool microbial function.
Project description:Chronic acid suppression by proton pump inhibitor (PPI) has been hypothesized to alter the gut microbiota via a change in intestinal pH. To evaluate the changes in gut microbiota composition by long-term PPI treatment. Twenty-four week old F344 rats were fed with (n = 5) or without (n = 6) lansoprazole (PPI) for 50 weeks. Then, profiles of luminal microbiota in the terminal ileum were analyzed. Pyrosequencing for 16S rRNA gene was performed by genome sequencer FLX (454 Life Sciences/Roche) and analyzed by metagenomic bioinformatics.
Project description:Here we exploited a Han Chinese population-based cohort with extensive host metadata established in the Pinggu (PG) district of Beijing, and investigated gut microbiota from 2,338 adults (26-76 years) by metagenomic sequencing, revealing associations of the gut microbiota with sex, sex hormones, age, and a number of clinical and metabolic parameters.
Project description:We used a DNA microarray chip covering 369 resistance types to investigate the relation of antibiotic resistance gene diversity with humansM-bM-^@M-^Y age. Metagenomic DNA from fecal samples of 123 healthy volunteers of four different age groups, i.e. pre-school Children (CH), School Children (SC), High School Students (HSS) and Adults (AD) were used for hybridization. The results showed that 80 different gene types were recovered from the 123 individuals gut microbiota, among which 25 were present in CH, 37 in SC, 58 in HSS and 72 in AD. Further analysis indicated that antibiotic resistance genes in groups of CH, SC and AD can be independently clustered, and those ones in group HSS are more divergent. The detailed analysis of antibiotic resistance genes in human gut is further described in the paper DNA microarray analysis reveals the antibiotic resistance gene diversity in human gut microbiota is age-related submitted to Sentific Reports The antibiotic resistance gene microarray is custom-designed (Roche NimbleGen), based on a single chip containing 3 internal replicated probe sets of 12 probes per resistance gene, covering the whole 315K 12-plex platform spots.
Project description:Immune cells in visceral adipose tissue are critical for regulating metabolic homeostasis. In addition, gut microbiota is an important regulator of the immune system. We used single-cell RNA sequencing (scRNA-seq) to analyze the relationship between gut microbiota and immune cells in visceral adipose tissue.
Project description:We used a DNA microarray chip covering 369 resistance types to investigate the relation of antibiotic resistance gene diversity with humans’ age. Metagenomic DNA from fecal samples of 123 healthy volunteers of four different age groups, i.e. pre-school Children (CH), School Children (SC), High School Students (HSS) and Adults (AD) were used for hybridization. The results showed that 80 different gene types were recovered from the 123 individuals gut microbiota, among which 25 were present in CH, 37 in SC, 58 in HSS and 72 in AD. Further analysis indicated that antibiotic resistance genes in groups of CH, SC and AD can be independently clustered, and those ones in group HSS are more divergent. The detailed analysis of antibiotic resistance genes in human gut is further described in the paper DNA microarray analysis reveals the antibiotic resistance gene diversity in human gut microbiota is age-related submitted to Sentific Reports
Project description:Increasing the consumption of dietary fibre has been proposed to alleviate the progression of non-communicable diseases such as obesity, type 2 diabetes and cardiovascular disease, yet the effect of dietary fibre on host physiology remains unclear. In this study, we performed a multiple diet feeding study in C57BL/6J mice to compare high fat and high fat modified with dietary fibre diets on host physiology and gut homeostasis by combining proteomic, metagenomic, metabolomic and glycomic techniques with correlation network analysis. We observed significant changes in physiology, liver proteome, gut microbiota and SCFA production in response to high fat diet. Dietary fibre modification did not reverse these changes but was associated with specific changes in the gut microbiota, liver proteome, SCFA production and colonic mucin glycosylation. Furthermore, correlation network analysis identified gut bacterial-glycan associations.
Project description:To unravel distinct pattern of metagenomic surveillance and respiratory microbiota between Mycoplasma pneumoniae (M. pneumoniae) P1-1 and P1-2 and explore the impact of COVID-19 pandemic on epidemiological features