Project description:IntroductionMalaria transmission occurs when Plasmodium sporozoites are transferred from the salivary glands of anopheline mosquitoes to a human host through the injection of saliva. The need for better understanding, as well as novel modes of inhibiting, this key event in transmission has driven intense study of the protein and miRNA content of saliva. Until now the possibility that mosquito saliva may also contain bacteria has remained an open question despite the well documented presence of a rich microbiome in salivary glands.MethodsUsing both 16S rRNA sequencing and MALDI-TOF approaches, we characterized the composition of the saliva microbiome of An. gambiae and An. stephensi mosquitoes which respectively represent two of the most important vectors for the major malaria-causing parasites P. falciparum and P. vivax.ResultsTo eliminate the possible detection of non-mosquito-derived bacteria, we used a transgenic, fluorescent strain of one of the identified bacteria, Serratiamarcescens, to infect mosquitoes and detect its presence in mosquito salivary glands as well as its transfer to, and colonization of, mammalian host tissues following a mosquito bite. We also showed that Plasmodium infection modified the mosquito microbiota, increasing the presence of Serratia while diminishing the presence of Elizabethkingia and that both P. berghei and Serratia were transferred to, and colonized mammalian tissues.DiscussionThese data thus document the presence of bacteria in mosquito saliva, their transfer to, and growth in a mammalian host as well as possible interactions with Plasmodium transmission. Together they raise the possible role of mosquitoes as vectors of bacterial infection and the utility of commensal mosquito bacteria for the development of transmission-blocking strategies within a mammalian host.
Project description:During blood feeding haematophagous arthropods inject into their hosts a cocktail of salivary proteins whose main role is to counteract host haemostasis, inflammation and immunity. However, animal body fluids are known to also carry miRNAs. To get insights into saliva and salivary gland miRNA repertoires of the African malaria vector Anopheles coluzzii we used small RNA-Seq and identified 214 miRNAs, including tissue-enriched, sex-biased and putative novel anopheline miRNAs. Noteworthy, miRNAs were asymmetrically distributed between saliva and salivary glands, suggesting that selected miRNAs may be preferentially directed toward mosquito saliva. The evolutionary conservation of a subset of saliva miRNAs in Anopheles and Aedes mosquitoes, and in the tick Ixodes ricinus, supports the idea of a non-random occurrence pointing to their possible physiological role in blood feeding by arthropods. Strikingly, eleven of the most abundant An. coluzzi saliva miRNAs mimicked human miRNAs. Prediction analysis and search for experimentally validated targets indicated that miRNAs from An. coluzzii saliva may act on host mRNAs involved in immune and inflammatory responses. Overall, this study raises the intriguing hypothesis that miRNAs injected into vertebrates with vector saliva may contribute to host manipulation with possible implication for vector-host interaction and pathogen transmission.
Project description:Plasmodium sporozoites are injected, in addition to saliva, into animal hosts when a female Anopheles mosquito takes a blood meal. The molecular components of saliva that interact with Plasmodium during this process are poorly characterized. Here we collected Plasmodium sporozoites directly from salivating Anopheles mosquitoes and looked for the presence of vector proteins that could be interacting with the parasites during transmission for further characterization.
Project description:Mosquito saliva facilitates blood feeding through the anti-haemostatic, anti-inflammatory and immunomodulatory properties of its proteins. However, the potential contribution of non-coding RNAs to host manipulation is still poorly understood. We analysed small RNAs from Aedes aegypti saliva and salivary glands and show here that chikungunya virus-infection triggers both the siRNA and piRNA antiviral pathways with limited effects on miRNA expression profiles. Saliva appears enriched in specific miRNA subsets and its miRNA content is well conserved among mosquitoes and ticks, clearly pointing to a non-random sorting and occurrence. Finally, we provide evidence that miRNAs from Ae. aegypti saliva may target human immune and inflammatory pathways, as indicated by prediction analysis and searching for experimentally validated targets of identical human miRNAs. Overall, we believe these observations convincingly support a scenario where both proteins and miRNAs from mosquito saliva are injected into vertebrates during blood feeding and contribute to the complex vector-host-pathogen interactions.
Project description:Anopheline mosquitoes transmit Plasmodium parasites to humans, and are responsible for an estimated 219 million cases of malaria, leading to over 400,000 deaths annually. The mosquito’s immune system limits Plasmodium infection in several ways, and hemocytes, the insect white blood cells, are key players in these defense responses. However, the full functional diversity of mosquito hemocytes and their developmental trajectories have not been established. We use bulk RNA sequencing (scRNA-seq) to analyze the transcriptional profiles of hemocytes, of guts, and of carcasses of mosquito hemocytes in response to blood feeding or infection with Plasmodium. Data from three independent biological replicates for each condition and time-point (day 0, 1, 2, 3, and 7 after sugar-feeding, blood-feeding or P. berghei infection).
Project description:Anopheline mosquitoes transmit Plasmodium parasites to humans, and are responsible for an estimated 219 million cases of malaria, leading to over 400,000 deaths annually. The mosquito’s immune system limits Plasmodium infection in several ways, and hemocytes, the insect white blood cells, are key players in these defense responses. However, the full functional diversity of mosquito hemocytes and their developmental trajectories have not been established. We use single cell RNA sequencing (scRNA-seq) to analyze the transcriptional profiles of individual mosquito hemocytes in response to blood feeding or infection with Plasmodium. Circulating hemocytes were collected from adult A. gambiae M form (A. coluzzii) females that were either kept on a sugar meal or fed on a healthy or a Plasmodium berghei-infected mouse. Transcriptomes from 5,383 cells (collected 1, 3, and 7 days after feeding) revealed nine major cell clusters.
Project description:Malaria parasites transmitted by mosquito bite are remarkably efficient in establishing human infections. The infection process requires ~30 minutes and is highly complex as quiescent sporozoites injected with mosquito saliva must be rapidly activated in the skin, migrate through the body, and infect the liver. This process is poorly understood for Plasmodium vivax due to low infectivity in the in vitro models. To study this skin-to-liver stage of malaria, we developed quantitative bioassays coupled with transcriptomics to evaluate parasite changes linked with mammalian microenvironmental factors. Our in vitro phenotype and RNA-seq analyses revealedkey microenvironmental relationships with distinct biological functions. M ost notable, preservation of sporozoite quiescence by exposure to insect-like factors coupled with strategic activation limits untimely activation of invasion-associated genes to dramatically increase hepatocyte invasion rates. We also report the first transcriptomic analysis of the P. vivax sporozoite interaction in salivary glands identifying 118 infection-related differentially-regulated Anopheles dirus genes. These results provide important new insights in malaria parasite biology and identify priority targets for antimalarial therapeutic interventions to block P. vivax infection.
Project description:Dengue virus (DENV), a flavivirus of global importance, is transmitted to humans by mosquitoes. In this study, we developed in vitro and in vivo models of saliva-mediated enhancement of DENV infectivity. Serine protease activity in Aedes aegypti saliva augmented virus infectivity in vitro by proteolyzing extracellular matrix proteins, thereby increasing viral attachment to heparan sulfate proteoglycans and inducing cell migration. A serine protease inhibitor reduced saliva-mediated enhancement of DENV in vitro and in vivo, marked by a 100-fold reduction in DENV load in murine lymph nodes. A saliva-mediated infectivity enhancement screen of fractionated salivary gland extracts identified serine protease CLIPA3 as a putative cofactor, and short interfering RNA knockdown of CLIPA3 in mosquitoes demonstrated its role in influencing DENV infectivity. Molecules in mosquito saliva that facilitate viral infectivity in the vertebrate host provide novel targets that may aid in the prevention of disease.