Project description:Microbiome DNA from the adhering fraction of a sheep rumen. The RSTs were generated using an improved version of SARST (referred to as iSARST) from the microbiome DNA extracted from the adhering fraction of the rumen content taken from a sheep. The iSARST method is going to be submitted to Nature Biotechnology for publication. Keywords: other
Project description:We performed single-cell RNA-sequencing on the rumen epithelium of dairy cows to construct an epithelial single-cell map of the rumen.
Project description:Microbiome DNA from the adhering fraction of a sheep rumen. The RSTs were generated using an improved version of SARST (referred to as iSARST) from the microbiome DNA extracted from the adhering fraction of the rumen content taken from a sheep. The iSARST method is going to be submitted to Nature Biotechnology for publication. Keywords: other
Project description:SARST-V1 method was used to asses the effect of live yeast on the microbial population of the rumen of cows fed an acidogenic diet 3 cows were used in 3 by 3 latin-square design with 3 periods. In each period animals received either 0.5g/d of yeast, 5g/d of yeast or none. Rumen microbiota was analysed using the SARST-V1 method for each period.
Project description:This study identifies key microbiome and epithelial cell subtypes involved in grass digestion and VFA metabolism in the rumen. By integrating multi-omic data, we reveal novel links between microbial activity, epithelial cell function, and grassland foraging, providing critical insights into mechanisms underlying grass prevalence and their implications for optimizing ruminant health and productivity. This research enhances our understanding of the grass-microbiome- rumen axis and its role in sustainable grazing systems.
Project description:In dairy cows, administration of high dosages of niacin (NA) was found to cause anti-lipolytic effects, which are mediated by the NA receptor hydroxyl-carboxylic acid receptor 2 (HCAR2) in white adipose tissue (WAT), and thereby to an altered hepatic lipid metabolism. However, almost no attention has been paid to possible direct effects of NA in cattle liver, despite showing that HCAR2 is expressed also in the liver of cattle and is even more abundant than in WAT. Due to this, we hypothesized that feeding of rumen-protected NA to dairy cows influences critical metabolic and/or signaling pathways in the liver through inducing changes in the hepatic transcriptome. In order to identify these pathways, we applied genome-wide transcript profiling in liver biopsies obtained at 1 wk postpartum (p.p.) from dairy cows of a recent study (Zeitz et al., 2018) which were fed a total mixed ration without (control group) or with rumen-protected NA from 21 d before calving until 3 wk p.p. Hepatic transcript profiling revealed that a total of 487 transcripts were differentially expressed [filter criteria fold change (FC) > 1.2 or FC < -1.2 and P < 0.05] in the liver at 1 wk p.p. between cows fed NA and control cows. Substantially more transcripts were down-regulated (n = 338), while only 149 transcripts were up-regulated by NA in the liver of cows. Gene set enrichment analysis (GSEA) for the up-regulated transcripts revealed that the most enriched gene ontology (GO) biological process terms were exclusively related to immune processes, such as leukocyte differentiation, immune system process, leukocyte differentiation, activation of immune response and acute inflammatory response. In line with this, the plasma concentration of the acute phase protein haptoglobin tended to be increased in dairy cows fed rumen-protected NA compared to control cows (P < 0.1). GSEA of the down-regulated transcripts showed that the most enriched biological process terms were related to metabolic processes, such as cellular metabolic process, small molecule metabolic process, lipid catabolic process, organic cyclic compound metabolic process, small molecule biosynthetic process and cellular lipid catabolic process. In conclusion, hepatic transcriptome analysis shows that rumen-protected NA induces genes which are involved mainly in immune processes including acute phase response and stress response in dairy cows at wk 1 p.p. These findings indicate that supplementation of rumen-protected NA to dairy cows in the periparturient period may induce or amplify the systemic inflammation-like condition which is typically observed in the liver of high-yielding dairy cows in the p.p. period.