Project description:Short-term variability in the microbial, nano- and picoplankton dynamics during post-upwelling season at a fixed sampling point in St Helena Bay
Project description:This study investigated the consumption of milk products in the archaeological record, utilizing human dental calculus as a reservoir of dietary proteins from archaeological samples from across Eurasia. Protein extraction and generation of tryptic peptides from dental calculus was performed using a filter-aided sample preparation (FASP) protocol, modified for ancient samples, on 92 samples of archaeological dental calculus. Samples were extracted at three laboratories; the Functional Genomics Centre Zürich (FGCZ), the Centre for GeoGenetics at the National History Museum of Denmark, and BioArCh at the University of York. Sample extracts were sequenced (LC-MS/MS) using an LTQ-Orbitrap Velos (FGCZ), a Q-Exactive Hybrid Quadrupole Orbitrap and an LTQ-Orbitrap Elite (Central Proteomics Facility, Target Discovery Institute, Oxford).
Project description:This study investigated the consumption of milk products in the archaeological record, utilizing human dental calculus as a reservoir of dietary proteins from archaeological samples from across Eurasia. Protein extraction and generation of tryptic peptides from dental calculus was performed using a filter-aided sample preparation (FASP) protocol, modified for ancient samples, on 92 samples of archaeological dental calculus. Samples were extracted at three laboratories; the Functional Genomics Centre Zürich (FGCZ), the Centre for GeoGenetics at the National History Museum of Denmark, and BioArCh at the University of York. Sample extracts were sequenced (LC-MS/MS) using an LTQ-Orbitrap Velos (FGCZ), a Q-Exactive Hybrid Quadrupole Orbitrap and an LTQ-Orbitrap Elite (Central Proteomics Facility, Target Discovery Institute, Oxford).
Project description:To identified Biotin-ST probe interacting proteins, we applied SPIDER assay by using Biotin-ST probe in cells lysates, and the enriched protein was identified by mass spectrometry to quantitatively find the targets of Biotin-ST interactors.