Project description:Bacillus velezensis strain GH1-13 with a native conjugative plasmid (pBV71) is thought to be beneficial to the bacterium, although no information on its effects exists. Here we show that strain GH1-13 frequently lost the plasmid during normal growth conditions in a rich medium and changed the morphology and sensitivity to selenite and tellurite. Compared to the plasmid-cured cells, the wild-type and complemented cells exhibited multicellular behavior with the expression of conjugative type IV pili and regulatory Rap homologous genes that regulate the interconnection between conjugation and biofilm formation. Further omics-based analyses of morphogenesis, biofilm formation, and antibiotic synthesis suggest that the conjugative plasmid activates envelope stress responses in association with increased biosynthesis of extracellular polysaccharide and antibiotics for protective functions of the host during exponential phase.
Project description:we examined the three different mature biofilms and searched the genes which promoted the rapid biofilm formation when their population hosing the plasmids. We investigate the global transcriptional differences between the non-conjugative or conjugative plasmid-carrying and plasmid-free strains.
Project description:The impact of the conjugative plasmid pCAR1, which is involved in carbazole degradation, on the proteome, acetylome, and succinylome of host Pseudomonas putida KT2440 was investigated using a stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative analysis.
Project description:The impact of the conjugative plasmid pCAR1, which is involved in carbazole degradation, on the proteome, acetylome, and succinylome of host Pseudomonas putida KT2440 was investigated using a stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative analysis.
Project description:Horizontal gene transfer via plasmid conjugation is a major driving force in microbial evolution. Transfer of conjugative plasmids is a complex process that needs to be synchronized with the physiological state of the bacterial host. While several host transcription factors are known to control the plasmid-borne transfer control genes, RNA-based regulatory circuits for host-plasmid communication remain unknown. Here, we describe a post-transcriptional mechanism whereby the Hfq-dependent small RNA, RprA, inhibits transfer of pSLT, the virulence plasmid of Salmonella enterica. RprA employs two different seed pairing domains to recognize and activate the mRNAs of both the sigma-factor S and RicI, a cytoplasmic membrane protein. The latter is a hitherto unknown conjugation inhibitor whose transcription requires S. Together, RprA and S constitute a feed-forward loop with AND-gate logic which tightly controls RicI synthesis for selective suppression of plasmid conjugation under membrane stress. This study reports the first sRNA-controlled feed-forward loop based on double target activation and an unexpected function for a core-genome encoded small RNA in controlling extrachromosomal DNA transfer.
Project description:The impact of the conjugative plasmid pCAR1, which is involved in carbazole degradation, on the succinylome of host Pseudomonas putida KT2440 was investigated using a stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative analysis. This dataset is related to PXD007089.
Project description:The impact of the conjugative plasmid pCAR1, which is involved in carbazole degradation, on the succinylome of host Pseudomonas putida KT2440 was investigated using a stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative analysis. This dataset is related to PXD007090.
Project description:Impacts of plasmid carriage on its host cell were comprehensively analyzed using conjugative plasmid pCAR1 in the three different kinds of hosts, Pseudomonas putida KT2440, P. aeruginosa PAO1, and P. fluorescens Pf0-1. Various analyses of the host phenotype showed that pCAR1 carriage reduced host fitness, swimming motility, and resistances to osmotic- or pH-stress, and brought about the alterations of primary metabolic capacities in the TCA cycle or those several steps away from the TCA cycle in the host cells. Growth phase-dependent transcriptome analyses were performed with the classification of the annotated genes based on their identities among the three hosts and their putative functions. pCAR1 carriage affected host transcriptome more greatly at the transition and stationary phases in each host. The transcriptome responses were more similar between KT2440 and PAO1 than between other host combinations, and many genes, such as for ribosomal proteins, F-type ATPase, and RNAP core, in both strains were commonly not suppressed in their stationary phases. These responses may have resulted in the reduction of host fitness, motility, and stress resistances. Host-specific responses to plasmid carriage were transcriptional changes of genes on putative prophage or foreign DNA regions. The extent of the impacts in host phenotypes and transcriptomes was similarly the largest in KT2440 and the lowest in Pf0-1. The host alterations controlled by pCAR1 carriage are important for understanding the fate of the plasmid and its host, plasmid maintenance, expression of plasmid genes, the host cell physiology, and host survivability in the environment.
Project description:Conjugative plasmids, major vehicles for the spread of antibiotic resistance genes, often contain multiple toxin‒antitoxin (TA) systems. However, the physiological functions of TA systems remain obscure. By studying TA families commonly found on colistin-resistant IncI2 mcr-1-bearing plasmids, we discovered that the HicAB TA, acts as a crucial addiction module to increase horizontal plasmid‒plasmid competition.