Project description:Oxidative stress contributes to impairment of skin health and aspects in the wound healing process for pathologies such as acne, psoriasis or skin cancer. Five Polynesian medicinal plants, among the most traditionally used for skin care (cosmetopoeia and pharmacopoeia) are studied herein for their antioxidant properties: Calophyllum inophyllum, Gardenia taitensis, Curcuma longa, Cordia subcordata and Ficus prolixa. For this purpose, plant extracts were submitted to in vitro bioassays related to antioxidant properties and their bioactive constituents were identified by metabolomic analytical approach. UHPLC-MS/MS analysis was performed leading to characterize 61 metabolites. Compounds annotated for F. prolixa and C. subcordata were reported for the first time in those indigenous trees. Antioxidant properties were evaluated by TPC, DPPH and FRAP assays. F. prolixa extract was the most active one within antioxidant properties similar to ascorbic acid and showed antioxidant intracellular activity on HaCaT model by AOP1 assay. On-Line-HPLC DPPH allowed the identification of phenolic bioactive compounds. These results highlight the potential of F. prolixa aerial roots as a source of antioxidant for skin care topical applications.
Project description:The cultivated almond exhibits self-incompatibility of the gametophytic type regulated by the S-locus, and expressed in pistil (S-RNase) and in pollen (SFB protein). The aim of this study is to clarify the transcription pattern of these 2 S-genes and to identify additional components of the gametophytic self-incompatibility system in almond. With this aim, A2-198 (self compatible) and ITAP-1 (self incompatible) almond selections were used: RNA-seq of pistils of these two accessions both un-pollinated and pollinated with A2-198 pollen were carried out.
Project description:Plum pox virus (PPV) causes the serious sharka disease in Prunus trees. Peach [P. persica (L.) Batsch] trees are severely affected by PPV and no definitive source of genetic resistance has been identified at this moment. Previous results showed, however, that PPV-resistant ‘Garrigues’ almond [P. dulcis (Mill.) D.A. Webb] was able to transfer its resistance to ‘GF305’ peach through grafting, preventing these trees from PPV infection and reducing symptomatology and viral load in PPV-infected plants. A recent study tried to identify genes responsible for this effect by studying mRNA expression through RNAseq data in peach and almond plants, before and after grafting, and before and after PPV infection. In this work, we used the same peach and almond samples, but focused the high-throughput analyses on small RNAs (sRNAs) expression. We studied massive sequencing data and found an interesting pattern of sRNAs overexpression linked to antiviral defense genes that suggested activation of these genes followed by downregulation to basal levels. We also discovered that ‘Garrigues’ almond plants were infected by different plant viruses that were transferred to peach plants. The large amounts of viral sRNAs found in grafted peaches indicated a strong RNA silencing antiviral response and led us to postulate that these plant viruses could be collaborating by cross-protection in the observed ‘Garrigues’ effect.
Project description:The vast majority of traditional almond varieties are self-incompatible and the level of variability of the species is very high, resulting in a highly heterozygosity genome. Therefore, information on the different haplotypes is particularly relevant to understand the genetic basis of trait variability in this species. However, although reference genomes for several almond varieties exist, none of them is phased and has genome information at the haplotype level. Here we present a phased assembly of genome of the almond cv. Texas. Our analysis shows that the “Texas” genome has a high degree of heterozygosity, both as SNPs, short indels, and structural variants (SV) level. Many of the SVs are due to heterozygous Transposable Element (TE) insertions, and in many cases they also contain genic sequences. In addition to the direct consequences of this genic variability on the presence/absence of genes, our results show that variants located close to genes tend to be associated with allele-specific gene expression (ASE), which highlights the importance of heterozygous SVs in almond.
Project description:The phytopathogenic fungus Chrysoporthe cubensis is a relevant source of lignocellulolytic enzymes. This work aimed to compare the profile of lignocellulose- degrading proteins secreted by C. cubensis grown under semi-solid state fermentation using wheat bran and sugarcane bagasse. The proteins from the fungus extract grown in wheat bran (WBE) and sugarcane bagasse (SBE) were qualitative and quantitatively analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS). Label-free proteomic analysis of WBE and SBE showed that the fungus produced a spectrum of carbohydrate-active enzymes (CAZymes) with exclusive characteristics from each extract. While SBE resulted in an enzymatic profile directed towards the depolymerization of cellulose, the enzymes in WBE were more adaptable to the degradation of biomass rich in hemicellulose and other non-lignocellulosic polymers. Saccharification of alkaline pre-treated sugarcane bagasse with SBE promoted glucose release higher than commercial cocktails (8.11 g L -1 ), while WBE promoted the higher release of xylose (5.71 g L -1 ). Our results allowed an in-depth knowledge of the complex set of enzymes secreted by C. cubensis responsible for its high lignocellulolytic activity and still provided the identification of promising target proteins for biotechnological applications in the context of biorefinery.
Project description:Transposons played a major role in the diversification between the closely related almond (Prunus dulcis) and peach (P. persica) genomes: Results from the almond genome sequence.
Project description:Almond is one of the most featured nut crops owing to its high nutritional value. However, due to three different waves of flower and fruitlet drop, fruit drop is a major concern for growers. In this study, we carried out a time-course transcriptome analysis to investigate gene expression difference between normal and abnormal fruitlet development. By de novo assembly analysis, we identified 33,577 unigenes and provided their functional annotations. In total, we identified 8,676 differentially expressed genes and observed the most apparent difference between normal and abnormal fruits at 12 and 17 day after flowering. Their biological functions were enriched in carbon metabolism, carbon fixation in photosynthetic organisms and plant hormone signal transduction. RT-qPCR validated the expression pattern of 15 representative genes, including glycosyltransferase like family 2, MYB39, IAA13, gibberellin-regulated protein 11-like and POD44, which confirmed the reliability of our transcriptome data. This study provides an insight into the association between abnormal fruit development and carbohydrate signaling from the early developmental stages and could be served as useful information for understanding the regulatory mechanism related to almond fruit drop.