Project description:BackgroundExploring different microbial sources for biotechnological production of organic acids is important. Dutch and Thai cow rumen samples were used as inocula to produce organic acid from starch waste in anaerobic reactors. Organic acid production profiles were determined and microbial communities were compared using 16S ribosomal ribonucleic acid gene amplicon pyrosequencing.ResultsIn both reactors, lactate was the main initial product and was associated with growth of Streptococcus spp. (86% average relative abundance). Subsequently, lactate served as a substrate for secondary fermentations. In the reactor inoculated with rumen fluid from the Dutch cow, the relative abundance of Bacillus and Streptococcus increased from the start, and lactate, acetate, formate and ethanol were produced. From day 1.33 to 2, lactate and acetate were degraded, resulting in butyrate production. Butyrate production coincided with a decrease in relative abundance of Streptococcus spp. and increased relative abundances of bacteria of other groups, including Parabacteroides, Sporanaerobacter, Helicobacteraceae, Peptostreptococcaceae and Porphyromonadaceae. In the reactor with the Thai cow inoculum, Streptococcus spp. also increased from the start. When lactate was consumed, acetate, propionate and butyrate were produced (day 3-4). After day 3, bacteria belonging to five dominant groups, Bacteroides, Pseudoramibacter_Eubacterium, Dysgonomonas, Enterobacteriaceae and Porphyromonadaceae, were detected and these showed significant positive correlations with acetate, propionate and butyrate levels.ConclusionsThe complexity of rumen microorganisms with high adaptation capacity makes rumen fluid a suitable source to convert organic waste into valuable products without the addition of hydrolytic enzymes. Starch waste is a source for organic acid production, especially lactate.
Project description:Transcriptomics analysis of biopolymer (medium chain length polyhydroxyalkanoate) producing strain P.putida LS46 cultured with biodiesel derived waste carbon sources: studies of cellular adaptation to the industrial waste streams and metabolic profiling under the polymer producing conditions. We are reporting RNAseq analysis data here as part of our multi-level Omics study of medium chain length polyhydroxyalkanoate (mcl-PHA) producing strain P.putida LS46 culture with biodiesel derived waste glycerol and waste fatty acids. The data presented here will be used in two separate manuscripts. The objectives of this study are a): to evaluate cellular responses of P.putida LS46 under industrial waste stream. b): to study gene expression profile under two selected mcl-PHA producing conditions of P.putida LS46. Comparative multi-level Omics study: for objective a): Exponential P.putida LS46 cell from waste glycerol culture compared against reagent grade pure glycerol culture. For objective b): Two mcl-PHA producing conditions, namely stationary phase waste glycerol culture and exponential phase waste fatty acid culture of P.putida LS46, were compared against exponential phase waste glycerol culture of P.putida LS46. Major results from objective a): The waste glycerol substrate induced expression of a large number of genes putatively involved in heavy metal tolerance, including three gene clusters: a putative cusABC transcript unit and two copies of copAB, which are usually involved in copper resistance and tolerance to other monovalent heavy metals. A local gene relocation was observed in cluster 1 consisting cusABC and copAB relative to the KT2440 type strain according to the phylogenetic and gene neighbourhood analyses on various P. putida strains. P. putida LS46 also contains 11 putative MerR family regulators, which sense various environmental stimuli including heavy metals. MerR-1 is an ortholog of the copper response regulator of other gram-negative bacteria, and was highly up-regulated in waste glycerol cultures. Finally, a number of genes involved in cell responses to high extra-cellular Na+ concentrations, and genes of the fatty acid beta-oxidation pathway were up-regulated in waste glycerol cultures Major results from objective b): Regardless to the type of substrates, up-regulation of two mcl-PHA synthase (PhaC1 and PhaC2), and two phasin proteins (PhaF and PhaI) are the most common genotype under mcl-PHA production conditions. PhaG and possible PhaJ4 connect fatty acid de novo synthesis to mcl-PHA in waste glycerol culture. Interestingly, expression of gene, fabZ, in production of unsaturated fatty acid from fatty acid de novo synthesis was only observed in waste glycerol culture. On the other hand, PhaJ1 and PhaJ4 derived mcl-PHA production via fatty acid beta-oxidation was observed under waste fatty acid culture. These results would help to explain observed different production kinetics and monomer distribution of the polymer. Although under active mcl-PHA production condition, depression on the expression of glpF genes in glycerol transportation system prevent further channelling extra-cellular glycerol into the cell. Waste glycerol culture also triggers trahalose synthesis pathway, a potential competing pathway during mcl-PHA synthesizing. In waste fatty acid culture, the intermediates (acyl-CoA and 3-hydroxyacyl-CoA) of fatty acid beta-oxidation were used for mcl-PHA production and were also likely hydrolysed to their free acid forms via an up-regulated thioesteras coding gene, tesA. Acetyl-CoA cleaved from the pathway was clearly channeled into glyoxylate shut for C2 carbon assimilation over spillage as CO2 through TCA cycle or used in fatty acid biosynthesis pathway. In total 4 sampling points, namely exponential phase of pure glycerol, waste glycerol and waste free fatty acids cultures, and stationary phase of waste glycerol culture. For each sampling point, 2 biological replicates were taken. (Thus 8 samples in total)
Project description:Here, we investigated marine thraustochytrid Schizochytrium limacinum SR21 for its ability to convert waste oil, mixture of commercial oils (mCOs) and volatile fatty acids i.e., acetic acid and butyric acid into ω-3 fatty acid; docosahexaenoic acid (DHA). Metabolic insights through whole cell transcriptomic aid in tracing the route of substrate assimilation.
Project description:Starch and NDF are the main components in the diets of ruminants worldwide and are the main energy source for rumen microorganisms and hosts. The purpose of this study was to investigate the effects of different NDF/starch ratios on rumen fermentation parameters, rumen development and rumen microbes in lambs and to predict the function of rumen microbes by metagenomic techniques. In this study, 30 lambs with birth weights of (3.0 ± 0.5) kg were selected. The lambs of Hu sheep were randomly divided into two groups, fed starter with an NDF/starch ratio of 0.5 (group A) or 1.0 (group C). Samples of the rumen tissue and contents were collected after slaughter. The results showed that the ADG and ADFI of group A were significantly higher than those of group C (P < 0.05), but there was no significant difference in the FCR (P > 0.05). Therefore, from the perspective of feed-related economic benefits, group C showed greater economic value; the A/P of group C was significantly lower than that of group A (0.05 < P < 0.1), and the TVFA showed no significant difference (P > 0.05); The lengths of the rumen papillae of group C was significantly higher than that of group A (0.05 < P < 0.1). There was no significant difference in the abundance of the top 10 species at the phylum level and genus level (P > 0.05). CAZymes gene enrichment was observed in the rumen microbial community of lambs in group C (P < 0.05). In conclusion, group C, fed with starter with a higher NDF/starch ratio, had a higher feeding value. This study provides comprehensive insights into the composition of NDF and starch in lamb starter.
Project description:Metatranscriptomic analysis of bioreactor for the anaerobic fermentation of food waste extract and medium chain fatty acids production
Project description:Transcriptomics analysis of biopolymer (medium chain length polyhydroxyalkanoate) producing strain P.putida LS46 cultured with biodiesel derived waste carbon sources: studies of cellular adaptation to the industrial waste streams and metabolic profiling under the polymer producing conditions. We are reporting RNAseq analysis data here as part of our multi-level Omics study of medium chain length polyhydroxyalkanoate (mcl-PHA) producing strain P.putida LS46 culture with biodiesel derived waste glycerol and waste fatty acids. The data presented here will be used in two separate manuscripts. The objectives of this study are a): to evaluate cellular responses of P.putida LS46 under industrial waste stream. b): to study gene expression profile under two selected mcl-PHA producing conditions of P.putida LS46. Comparative multi-level Omics study: for objective a): Exponential P.putida LS46 cell from waste glycerol culture compared against reagent grade pure glycerol culture. For objective b): Two mcl-PHA producing conditions, namely stationary phase waste glycerol culture and exponential phase waste fatty acid culture of P.putida LS46, were compared against exponential phase waste glycerol culture of P.putida LS46. Major results from objective a): The waste glycerol substrate induced expression of a large number of genes putatively involved in heavy metal tolerance, including three gene clusters: a putative cusABC transcript unit and two copies of copAB, which are usually involved in copper resistance and tolerance to other monovalent heavy metals. A local gene relocation was observed in cluster 1 consisting cusABC and copAB relative to the KT2440 type strain according to the phylogenetic and gene neighbourhood analyses on various P. putida strains. P. putida LS46 also contains 11 putative MerR family regulators, which sense various environmental stimuli including heavy metals. MerR-1 is an ortholog of the copper response regulator of other gram-negative bacteria, and was highly up-regulated in waste glycerol cultures. Finally, a number of genes involved in cell responses to high extra-cellular Na+ concentrations, and genes of the fatty acid beta-oxidation pathway were up-regulated in waste glycerol cultures Major results from objective b): Regardless to the type of substrates, up-regulation of two mcl-PHA synthase (PhaC1 and PhaC2), and two phasin proteins (PhaF and PhaI) are the most common genotype under mcl-PHA production conditions. PhaG and possible PhaJ4 connect fatty acid de novo synthesis to mcl-PHA in waste glycerol culture. Interestingly, expression of gene, fabZ, in production of unsaturated fatty acid from fatty acid de novo synthesis was only observed in waste glycerol culture. On the other hand, PhaJ1 and PhaJ4 derived mcl-PHA production via fatty acid beta-oxidation was observed under waste fatty acid culture. These results would help to explain observed different production kinetics and monomer distribution of the polymer. Although under active mcl-PHA production condition, depression on the expression of glpF genes in glycerol transportation system prevent further channelling extra-cellular glycerol into the cell. Waste glycerol culture also triggers trahalose synthesis pathway, a potential competing pathway during mcl-PHA synthesizing. In waste fatty acid culture, the intermediates (acyl-CoA and 3-hydroxyacyl-CoA) of fatty acid beta-oxidation were used for mcl-PHA production and were also likely hydrolysed to their free acid forms via an up-regulated thioesteras coding gene, tesA. Acetyl-CoA cleaved from the pathway was clearly channeled into glyoxylate shut for C2 carbon assimilation over spillage as CO2 through TCA cycle or used in fatty acid biosynthesis pathway.