Project description:This SuperSeries is composed of the following subset Series: GSE9947: Transcriptional analysis of Leishmania infantum methotrexate resistant strains using full-genome DNA microarrays GSE9948: Transcriptional analysis of Leishmania major methotrexate resistant strains using full-genome DNA microarrays Keywords: SuperSeries Refer to individual Series
Project description:The genomic DNAs of strains JPCM5 and 263 of L. infantum, strains LV39 and Friedlin of L. major and strains Parrot-TarII and S125 of L. tarentolae were used in comparative genomic hybridizations to reveal the intra-species and inter-species gene content, and to validate L. tarentolae Parrot-TarII genome sequencing results. Leishmania (Sauroleishmania) tarentolae was first isolated in the lizard Tarentola mauritanica. This species is not known to be pathogenic to humans but is often used as a model organism for molecular analyses or protein overproduction. The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved by high-throughput sequencing technologies. The L. tarentolae genome was first assembled de novo and then aligned against the reference L. major Friedlin genome to facilitate contig positioning and annotation, providing a 23-fold coverage of the genome. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described, and it provides an opportunity for comparison with the completed genomes of the pathogenic Leishmania species. A high synteny was observed in de novo assembled contigs between all sequenced Leishmania species. A number of limited chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic with L. major. Globally, over 90% of the L. tarentolae gene content was shared with the other Leishmania species. There were 250 L. major genes absent from L. tarentolae, and interestingly these missing genes were primarily expressed in the intracellular amastigote stage of the pathogenic parasites. This implies that L. tarentolae may have impaired ability to survive as an intracellular parasite. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the leishmanolysin (GP63) and a gene related to the promastigote surface antigen (PSA31C). Overall, L. tarentolae appears to have a gene content more adapted to the insect stage rather than the mammalian one. This may partly explain its inability to replicate within mammalian macrophages and its suspected preferred life style as promastigote in the lizards.
Project description:Leishmania (Viannia) braziliensis is the main etiological agent of cutaneous and mucocutaneous leishmaniasis in Latin America. Reports have described non-ulcerated atypical tegumentary leishmaniasis cases caused by L. braziliensis in several regions of the world, including in patients from the Xacriabá Indigenous reserve, in São João das Missões/Minas Gerais - Brazil. Parasites isolated from these atypical clinical lesions have previously been found to be resistant to antimony-based therapeutics. In the present study, proteins displaying differential abundance in 2 strains of L. braziliensis isolated from patients with atypical lesions compared with 4 strains isolated from patients with typical lesions were identified using a quantitative proteomics approach based on tandem mass tag labeling (TMT) and mass spectrometry. A total of 532 (p value <0.05) differentially abundant proteins were identified (298 up-regulated and 234 down-regulated) in strains from atypical lesions compared to strains from typical lesions. We observed a variety of proteins with differential abundance among the studied strains. Prominent positively regulated in atypical strains included proteins which may confer a greater survival inside the macrophage, proteins related to resistance to antimony and higher peroxidase activity. Also were identified proteins suggest as new drug and vaccines target. Our data contribute to characterization of these intriguing L. braziliensis strains, and sheds new light on ACL cases has been associated with therapeutic failures.
Project description:The genomic DNAs of strains JPCM5 and 263 of L. infantum, strains LV39 and Friedlin of L. major and strains Parrot-TarII and S125 of L. tarentolae were used in comparative genomic hybridizations to reveal the intra-species and inter-species gene content, and to validate L. tarentolae Parrot-TarII genome sequencing results. Leishmania (Sauroleishmania) tarentolae was first isolated in the lizard Tarentola mauritanica. This species is not known to be pathogenic to humans but is often used as a model organism for molecular analyses or protein overproduction. The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved by high-throughput sequencing technologies. The L. tarentolae genome was first assembled de novo and then aligned against the reference L. major Friedlin genome to facilitate contig positioning and annotation, providing a 23-fold coverage of the genome. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described, and it provides an opportunity for comparison with the completed genomes of the pathogenic Leishmania species. A high synteny was observed in de novo assembled contigs between all sequenced Leishmania species. A number of limited chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic with L. major. Globally, over 90% of the L. tarentolae gene content was shared with the other Leishmania species. There were 250 L. major genes absent from L. tarentolae, and interestingly these missing genes were primarily expressed in the intracellular amastigote stage of the pathogenic parasites. This implies that L. tarentolae may have impaired ability to survive as an intracellular parasite. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the leishmanolysin (GP63) and a gene related to the promastigote surface antigen (PSA31C). Overall, L. tarentolae appears to have a gene content more adapted to the insect stage rather than the mammalian one. This may partly explain its inability to replicate within mammalian macrophages and its suspected preferred life style as promastigote in the lizards. Six strains of three Leishmania species were hybridizated to 12 microarrays, each with four biological replicates (independent cultures). Supplementary file: Represents final results obtained after statistical analysis of all replicates.
Project description:The mRNA expression of antimony resistant strains of Leishmania donovani was compared to the expression of the sensitive Leishmania donovani.
Project description:Leishmania RNA virus 1 (LRV1) is a double stranded RNA (dsRNA) virus found in some strains of the human protozoan parasite Leishmania, the causative agent of leishmaniasis, a neglected tropical disease. Interestingly, the presence of LRV1 inside Leishmania constitutes an important virulence factor which worsens leishmaniasis outcome in a type I interferon (type I IFN) dependent manner and contributes to treatment failure. Understanding how macrophages respond towards Leishmania alone or in combination with LRV1 as well as the role that type I IFNs may play during infection is fundamental to oversee new therapeutic strategies. In order to dissect the macrophage response towards infection, RNA Sequencing (RNA-Seq) was performed on murine wild-type (WT) bone marrow derived macrophages infected with Leishmania guyanensis (Lgy) devoid or not of LRV1 (LgyLRV1- and LgyLRV1+ respectively) or co-infected with LgyLRV1- and Lymphocytic choriomeningitis virus (LCMV) for 8 and 24 hours. Additionally, macrophages were treated with type I IFN (IFNα or IFNβ) after 6 hours of infection.