Project description:To clarify the effects of near-infrared radiation, we assessed DNA microarray after water-filtered broad-spectrum near-infrared (1100-1800 nm together with a water-filter that excludes wavelengths 1400-1500 nm) irradiation.
Project description:To clarify the effects of near-infrared radiation, we assessed DNA microarray after water-filtered broad-spectrum near-infrared (1100-1800 nm together with a water-filter that excludes wavelengths 1400-1500 nm) irradiation. We performed 5 rounds of near-infrared irradiation (at 10 J âcm2) using 2 sets of transparent polycarbonate plates, one to block UV and the other to block both UV and near-infrared.
Project description:To clarify the effects of near-infrared radiation, we assessed DNA microarray after water-filtered near-infrared (1100-1800 nm together with a water-filter that excludes wavelengths 1400-1500 nm) irradiation.
Project description:The purpose of this study is to determine if Near-Infrared fluorescence imaging is an effective approach to detect the colorectal tumoral tissues and peritoneal implants in colorectal cancer patients.
Project description:Interventions: experimental group:application of near infrared-indocyanine green imaging system;Control group:Not use near infrared-indocyanine green imaging system
Primary outcome(s): Number of lymph nodes detected and positive rate;Perfusion of anastomosis;Anastomotic leakage;Navigation of vessels and structures
Study Design: Non randomized control
Project description:Snakes possess a unique sensory system for detecting infrared radiation, enabling them to generate a ‘thermal image’ of predators or prey. Infrared signals are initially received by the pit organ, a highly specialized facial structure that is innervated by nerve fibers of the somatosensory system. How this organ detects and transduces infrared signals into nerve impulses is not known. Here we use an unbiased transcriptional profiling approach to identify TRPA1 as the infrared receptor on sensory neurons that innervate the pit organ. TRPA1 from pit bearing snakes (rattlesnakes and pythons) are the most heat sensitive vertebrate ion channels thus far identified, consistent with their role as primary transducers of infrared stimuli in these animals. Thus, snakes detect infrared signals through a mechanism involving radiant heating of the pit organ, rather than photochemical transduction. These findings illustrate the broad evolutionary tuning of TRP channels as thermosensors in the vertebrate nervous system.
Project description:Despite efforts to mature human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) for disease modeling and high throughput screening, cells remain immature and may not reflect adult biology. Recent advancements utilize electro-mechanical and paracrine stimulation to functionally mature cardiomyocytes, but the resulting engineered constructs continue to lack a microenvironment conducive to electrical signal propagation and maturity. Conductive polymers are attractive candidates to facilitate electrical communication between gaps in sparse hPSC-CM clusters or between hPSC-CMs to repair conduction defects. To create a conductive polymer platform for improved electrical signal propagation between hPSC-CMs and achieve electrical maturity, we electrospun poly(3,4-ethylendioxythiophene):polystyrene sulfonate (PEDOT:PSS) blended with 8% (w/v) poly(vinyl alcohol) (PVA). Matrix fiber structure remained stable over 4 weeks in buffer, stiffness remains near cardiac stiffness in vivo, and electrical conductivity scaled with PEDOT:PSS concentration. When fibroblasts were added to fibers, cells had higher initial attachment to PEDOT:PSS compared to PVA-only scaffolds, and after 5 days, over 90% of fibroblasts remained viable on PEDOT:PSS scaffolds compared to PVA-only scaffolds. Electrically excitable hPSC-CMs cultured on conductive substrates exhibited an upregulation of cardiac and muscle-related genes as opposed to non-conductive substrates. These cells further displayed increased desmoplakin (DP) localization on conductive scaffolds, indicating an improvement in the mechanical stability of our hPSC-CMs. Sarcomere organization also scaled with increasing PEDOT:PSS concentration, even in sub-monolayer cell densities, suggesting that improved organization of the contractile machinery in these cells was due to the electrical condition of the matrix. Calcium handling indicated higher calcium flux with a shorter time to peak, further suggesting improved electrical maturity, even when sub-confluent. Taken together, these data suggest that PEDOT:PSS/PVA scaffolds are stable, of a stiffness relevant to cardiomyocytes, and supportive of electrical coupling even in the absence of a monolayer, which may improve cardiac disease modeling and drug development.