Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:We couple long-read sequence assembly, full-length cDNA sequencing, and a multi-platform scaffolding approach to produce ab initio chimpanzee and orangutan genome assemblies where most genes are complete, gaps are closed, and novel gene models are identified. We further analyzed the overlap between structural variants in the human genome and gene expression differences in human and chimpanzee cells, including iPS-derived organoid radial glia cells.
Project description:Multiomics of faecal samples collected from individuals in families with multiple cases of type 1 diabetes mellitus (T1DM) over 3 or 4 months. Metagenomic and metatranscriptomic sequencing and metaproteomics were carried out, as well as whole human genome sequencing. Phenotypic data is available.
Project description:Interventions: Analysis of bacteremia after ESD of the colon.
Primary outcome(s): Identification of bacteremia after ESD testing blood culture and 16SrRNA gene sequencing.
Study Design: Single arm Non-randomized
Project description:Intra-specific polymorphism in copy number is documented in many organisms, including human and chimpanzee, but very little is known for other great apes. This study aims to provide CNVs data for orangutan, gorilla, bonobo and chimpanzee, and compare the CNV patterns among these species, as well as with human CNVs and segmental duplications from public databases.
Project description:Multiomics of faecal samples collected from individuals in families with multiple cases of type 1 diabetes mellitus (T1DM) over 3 or 4 months. Metagenomic and metatranscriptomic sequencing and metaproteomics were carried out, as well as whole human genome sequencing. Phenotypic data is available.
Project description:Investigation of whole genome gene expression level changes in hepatocellular carcinoma cell line hepG2 in regular culture, hepG2-slug in regular culture and hepG2-slug on Matrigel. Whole genome gene expression level changes have been compared in hepatocellular carcinoma cell line hepG2 in regular culture, hepG2-slug in regular culture and hepG2-slug on Matrigel.
Project description:We performed genomic sequencing of whole-genome amplified DNA and native DNA isolated during growth in one of five conditions. We sequenced the DNA using Oxford Nanopore and compared the signals from the whole genome amplified DNA to the native DNA to infer sites at which the native DNA was methylated. The file names here are denoted via the strain name (SC419, SC452, or SC469), the growth condition (37C M9, 42C M9, 25C M9, rich media LB, 96 hours of growth), and in two cases, the replicate culture (M9_rep1 and M9_rep2)
Project description:In the comparative study of human and nonhuman communication, ape gesturing provided the first demonstrations of flexible, intentional communication outside human language. Rich repertoires of these gestures have been described in all ape species, bar one: us. Given that the majority of great ape gestural signals are shared, and their form appears biologically inherited, this creates a conundrum: Where did the ape gestures go in human communication? Here, we test human recognition and understanding of 10 of the most frequently used ape gestures. We crowdsourced data from 5,656 participants through an online game, which required them to select the meaning of chimpanzee and bonobo gestures in 20 videos. We show that humans may retain an understanding of ape gestural communication (either directly inherited or part of more general cognition), across gesture types and gesture meanings, with information on communicative context providing only a marginal improvement in success. By assessing comprehension, rather than production, we accessed part of the great ape gestural repertoire for the first time in adult humans. Cognitive access to an ancestral system of gesture appears to have been retained after our divergence from other apes, drawing deep evolutionary continuity between their communication and our own.