Project description:The PANarray design (GPL13324) contains the genes of eight P. aeruginosa genomes in non-redundant format, thus allowing identification of expression of non-PAO1 and other P. aeruginosa genes. For the series GSE28152, isogenic isolates were sequentially collected from two cystic fibrosis (CF) patients several years apart. The isolates had not been eradicated in the meantime and represent persister strains. One was an Australian Epidemic Strain-1 isolate and the other a non-epidemic strain. Strains were cultured in an artificial sputum medium (ASMDM) closely resembling CF sputum.
Project description:Arrays comparing Pseudomonas aeruginosa growth in a defined synthetic cystic fibrosis sputum medium with and without aromatic amino acids. Additional arrays comparing wild-type Pseudomonas aeruginosa and phhR mutant P. aeruginosa in defined synthetic cystic fibrosis sputum medium.
Project description:Effect of anaerobic growth condition on gene expression profile of Pseudomonas aeruginosa PA14 grown in cystic fibrosis sputum with 100 mM nitrate added
Project description:Pseudomonas aeruginosa is a predominant pathogen in chronic lung infections in individuals with cystic fibrosis (CF). Epidemic strains of P. aeruginosa, such as the Liverpool Epidemic Strain (LES), are capable of transferring between CF patients and have been associated with increased hospital visits and antibiotic treatments. We used label-free quantitative proteomics to compare the laboratory strain PAO1, beta-lactam resistant isolate LESB58, and beta-lactam susceptible isolate LESlike1 and their responses to three beta-lactams (aztreonam, carbenicillin, piperacillin), the aminoglycoside tobramycin, and hydrogen peroxide. Across all samples, we identified 3019 proteins with a minimum of two peptides. We found that LESB58 showed a large response to treatment with the beta-lactam carbenicillin, with 644 proteins significantly increased in abundance and 590 proteins significantly decreased in abundance (Students t-test, p≤0.05, FDR=0.05, S0=1). Proteomic characterization of an additional beta-lactam resistant isolate, LES431, exposed to carbenicillin showed that this response was shared by both isolates. Part of the response to carbenicillin in LESB58 included an increase in abundance in proteins involved in cell wall synthesis and division.
Project description:Surfing motility is a complex adaptation that is different from swarming motility and requires the stringent stress response in Pseudomonas aeruginosa LESB58 Cystic fibrosis (CF) is a genetic disease that affects mucin-producing body organs such as the lungs. Characteristic of CF is the production of thick and sticky mucus that can lead to progressive airway obstruction. The glycoprotein mucin is the major macromolecular component of mucus. Recently, we identified that the presence of mucin induced a rapid surface adaptation termed surfing motility in motile bacteria. P. aeruginosa, the main colonizing pathogen in CF employs several stress coping mechanisms to survive the highly viscous environment of the CF lung. Here, RNA-Seq was used to study the stringent stress response in the hypervirulent CF isolate LESB58 (Liverpool Epidemic Strain) via transcriptional profiling. As the stringent response is regulated by relA and spoT, we created a double knockout of these genes in LESB58 to study the impact of these stress regulators on surfing motility using RNA-Seq.
Project description:Pseudomonas aeruginosa is a predominant pathogen in chronic lung infections in individuals with cystic fibrosis (CF). Epidemic strains of P. aeruginosa, such as the Liverpool Epidemic Strain (LES), are capable of transferring between CF patients and have been associated with increased hospital visits and antibiotic treatments. Comparative genomics and phenotypic assays have shown that antibiotic resistance profiles differ among LES isolates and that genotype–phenotype associations are difficult to establish for resistance phenotypes in clinical isolates of P. aeruginosa based on these comparisons alone. We compared two LES isolates, LESlike1 and LESB58, and the common laboratory strain P. aeruginosa PAO1 using label-free quantitative proteomics to more accurately predict functional differences between strains. The proteomes of the LES isolates were found to be more similar to each other than to PAO1. However, we also observed a number of differences in the abundance of proteins involved in quorum sensing, virulence, and antibiotic resistance, including in the comparison of LESlike1 and LESB58. Specifically, the proteomic data revealed a higher abundance of proteins involved in polymyxin and aminoglycoside resistance in LESlike1. Minimum inhibitory concentration assays confirmed that LESlike1 has higher resistance to antibiotics from these classes. These findings provide an example of the ability of proteomic data to complement genotypic and phenotypic studies to understand resistance in clinical isolates.
2022-05-09 | PXD025827 | Pride
Project description:Cystic Fibrosis sputum longitudinal metagenomic and Pseudomonas aeruginosa population analysis
Project description:The opportunistic pathogen Pseudomonas aeruginosa is among the main colonizers of the lungs of cystic fibrosis (CF) patients. We have isolated and sequenced several P. aeruginosa isolates from the sputum of CF patients and used phenotypic, genomic and proteomic analyses to compare these CF derived strains with each other and with the model strain PAO1.
Project description:These are sputum samples collected from 8 individuals with cystic fibrosis during the course of routine clinical care. They were initially stored at 4C for up to 24 hours then stored at -80C. No processing has been done to the sputum prior to freezing. For each individual there are sputum samples collected both before and after the individual had his or her first positive sputum culture for nontuberculous mycobacteria (NTM). The individuals experienced different clinical courses after their infection.
Project description:P. aeruginosa was cultured in a MultiScreen-Mesh plate, which has a filter at the bottom of the wells. The plate was immersed in either in medium alone (control) or in medium inoculated with a mixture of five bacterial strains commonly found in cystic fibrosis sputum (\"microbiome\"). The filter prevented physical contact between P. aeruginosa and the other bacteria, yet soluble products could migrate through the filter into the P. aeruginosa biofilm. P. aeruginosa was then allowed to form biofilms in the wells for 72h, then the biofilm was harvested and a fraction of the harvested cells were used for re-inoculations. This was repeated for 18 cycles for a total of 54 days.