Project description:We used RNA-seq to profile E. coli K-12 MG1655 strains subjected to adaptive laboratory evolution after knockout of endogenous glucose-6-phosphate isomerase (pgi) and subsequent expression of heterologous version of the pgi gene from Pseudomonas aeruginosa and Bacillus megaterium.
Project description:We have performed adaptive laboratory evolution of E. coli pdhR gene deletion strain to examine the adaptive strategies of E. coli.
Project description:Although the relationship between phenotypic plasticity and evolutionary dynamics has attracted large interest, very little is known about the contribution of phenotypic plasticity to adaptive evolution. In this study, we analyzed phenotypic and genotypic changes in E. coli cells during adaptive evolution to ethanol stress. To quantify the phenotypic changes, transcriptome analyses were performed. We previously obtained 6 independently evolved ethanol tolerant E. coli strains, strains A through F, by culturing cells under 5% ethanol stress for about 1000 generations and found a significantly larger growth rate than the parent strains (Horinouchi et al, 2010, PMID: 20955615). To elucidate the phenotypic changes that occurred during adaptive evolution, we quantified the time-series of the expression changes by microarray analysis. Starting from frozen stocks obtained at 6 time points (0, 384, 744, 1224, 1824 and 2496 hours) in laboratory evolution, cells were cultured under 5% ethanol stress, and mRNA samples were obtained in the exponential growth phase for microarray analysis.
Project description:Although the relationship between phenotypic plasticity and evolutionary dynamics has attracted large interest, very little is known about the contribution of phenotypic plasticity to adaptive evolution. In this study, we analyzed phenotypic and genotypic changes in E. coli cells during adaptive evolution to ethanol stress. To quantify the phenotypic changes, transcriptome analyses were performed.
Project description:To understand the mechanism of isopropanol tolerance of Escherichia coli for improvement of isopropanol production, we performed genome re-sequencing and transcriptome analysis of isopropanol tolerant E. coli strains obtained from parallel adaptive laboratory evolution under IPA stress.
Project description:Understand the mechanisms of evolution in large-scale bio-production by tracking population dynamics leading to production decline in mevalonic acid-producing Escherichia coli. Industrial bioproduction entails growth of the production host to large bioreactors (e.g. 1-300 m3). This may put the organism at risk for generating non-producing subpopulations of genetic heterogeneity, which is not phenotypically detected at lab-scale (e.g. 2 L). To study these dynamics, we experimentally simulated these growth durations by passing mevalonic acid-producing E. coli to maintain the populations in exponential growth for 45 generations.
Project description:Two genetic selection systems that couple metabolite hydroxylation or methylation of small molecules to growth of Escherichia coli are presented in this study. One system targets pterin-dependent hydroxylation (tBPt) while another focuses on S-adenosylmethionine-dependent methylation (SAM). Using adaptive laboratory evolution with growth selection, these two systems are demonstrated to not only achieve in vivo directed evolution of enzymes involved in human hormone biosynthesis but also reveal non-intuitive host factors that elude existing synthetic biology approaches. Raw sequencing data for the relevant strains generated in this study are presented here.
Project description:Laboratory adaptive evolution experiments were conducted using serial passage of E. coli in M9 minimal medium supplemented with either 2 g/L of lactate for 60 days or 2 g/L of glycerol for 44 days. 7 parallel evolution strains were generated for growth on lactate and 7 parallel evolution strains were generated for growth on glycerol. Affymetrix arrays were used to study the time-course change in gene expression from unevolved E. coli (day 0) to a midpoint evolved strain (day 20) and evolutionary endpoints Biological replicate arrays were conducted for each of the time points tested for the different evolution strains
Project description:Laboratory adaptive evolution experiments were conducted using serial passage of E. coli in M9 minimal medium supplemented with either 2 g/L of lactate for 60 days or 2 g/L of glycerol for 44 days. 7 parallel evolution strains were generated for growth on lactate and 7 parallel evolution strains were generated for growth on glycerol. Affymetrix arrays were used to study the time-course change in gene expression from unevolved E. coli (day 0) to a midpoint evolved strain (day 20) and evolutionary endpoints