Project description:This SuperSeries is composed of the following subset Series: GSE13478: Pearl millet seedlings treated with methyl jasmonate (MeJA) GSE13479: Pearl millet seedlings infected with rust (Puccinia substriata) GSE13480: Pearl millet seedlings treated with salicylic acid (SA) Refer to individual Series
Project description:Pearl millet is a major cereal crop that feeds more than 90 million people worldwide in arid and semi-arid regions. The stalk phenotypes of Poaceous grasses are critical for their productivity and stress tolerance, however, the molecular mechanisms governing stalk development in pearl millet remained to be deciphered. In this study, we spatiotemporally measured 19 transcriptomes for stalk internodes of four different early developmental stages. Data analysis of the transcriptomes defined 4 developmental zones on the stalks and identified 12 specific gene sets with specific expression patterns across the zones. Using weighted gene co-expression network analysis (WGCNA), we found that 2 co-expression modules together with candidate genes were involved in stalk elongation and thickening of pearl millet. Among the elongation-related candidate genes, we established by SELEX that a MYB-family transcription factor PMF7G02448 can bind to the promoters of three cell wall synthases genes (CesAs). In summary, these findings provide insights into stalk development and offer potential targets for future genetic improvement of pearl millet.
Project description:Transcriptional profiling of rust-infected pearl millet seedlings over time [0h, 20h, 5d and 8d post infection (pi)]. Keywords: Time course, Stress response
Project description:Transcriptional profiling of SA-treated pearl millet seedlings over time [0, 12, 24 and 48 hours post treatment (hpt)]. Keywords: Time course, Stress response
Project description:Transcriptional profiling of MeJA-treated pearl millet seedlings over time [0, 12, 24 and 48 hours post treatment (hpt)]. Keywords: Time course, Stress response
Project description:Transcriptional profiling of rust-infected pearl millet seedlings over time [0h, 20h, 5d and 8d post infection (pi)]. Keywords: Time course, Stress response Loop design. All time points compared with time = 0 h in data analysis. Two biological replicates per sample, and one technical dye swap replicate.
Project description:Transcriptional profiling of MeJA-treated pearl millet seedlings over time [0, 12, 24 and 48 hours post treatment (hpt)]. Keywords: Time course, Stress response Loop design. All time points compared with time = 0 h in data analysis. Two biological replicates per sample, and one technical dye swap replicate.
Project description:Transcriptional profiling of SA-treated pearl millet seedlings over time [0, 12, 24 and 48 hours post treatment (hpt)]. Keywords: Time course, Stress response Loop design. All time points compared with time = 0 h in data analysis. Two biological replicates per sample, and one technical dye swap replicate.
Project description:We analyzed global gene expression in the crown tip of 2 pearl millet (Pennisetum glaucum) inbred lines with high (line 249) and low (line 220) root soil aggregation using RNAseq. The obtective was to identify genes potentially associated with changes in rhizosheath formation.
Project description:We analysed global gene expression in the primary root tip of 2 pearl millet (Pennisetum glaucum) inbred lines with high (line 249) and low (line 337) primary root growth using RNAseq. The objective was to identify genes potentially associated with changes in root growth.