ABSTRACT: Omics based approaches to decipher the leaf ionome, transcriptional and mutation changes in Solanum lycopersicum L. crop upon Tomato Brown Rugose Fruit Virus (ToBRFV) infection
Project description:Omics based approaches to decipher the leaf ionome, transcriptional and mutation changes in Solanum lycopersicum L. crop upon Tomato Brown Rugose Fruit Virus (ToBRFV) infection
| PRJEB72782 | ENA
Project description:Tomato brown rugose fruit virus
Project description:First expansion of the public Tomato brown rugose fruit virus (ToBRFV) Nextstrain build inclusion of new genomic and epidemiological data
Project description:Transcriptome analysis of Eggplant cv. PPL during fruit development at 0, 5, 10, 20 and 50 dpa. Eggplant is third most important solanaceae crop species after potato and tomato. It is a versatile crop adapted to different agro-climatic regions and can be grown throughout the year. Unripe eggplant fruit is consumed as cooked vegetable in various ways. It is low in calories and fats, contains mostly water, some protein, fibre and carbohydrates. To decipher molecular mechanisms involved in fruit development eggplant fruit were collected at 0, 5, 10, 20 and 50 dpa and gene expression profiles were analyzed using Affymetrix tomato GeneChip Genome array.
Project description:Members of the tomato clade exhibit wide diversity in fruit coloration, growth habit, leaf morphology and mating preferences. However, the mechanisms governing inter-species diversity in fruit coloration are largely unknown. Therefore, a proteomic approach combined with carotenoid profiling and carotenogenic gene expression was used to decipher the diversity in carotenogenesis in green-fruited Solanum habrochaites, orange-fruited S. galapagense, and red-fruited S. pimpinellifolium with S. lycopersicum, cv. Ailsa Craig (tomato).
Project description:Tomato phototropin1 mutant exhibits deep red color in the ripe fruits compared to the wild type. However, the mechanisms governing this intense fruit coloration in the mutant are largely unknown. Therefore, a proteomic approach combined with carotenoid profiling and carotenogenic gene expression was used to decipher the carotenogenesis in a tomato phototropin1 mutant with S. lycopersicum, cv. Ailsa Craig (tomato).