Project description:To determine the modulation of gene expression of Leishmania mexicana(M379)-inoculated BALB/c ears in the presence of promastigote secretory gel (PSG) A genome-wide transcriptional analysis was performed by comparing the gene expression profiles of Leishmania mexicana- inoculated BALB/c ears and Leishmania mexicana plus PSG BALB/c ears. Leishmania mexicana amastigotes were purified from mouse cutaneous lesions and transformed in vitro in metacycic promastigotes (MT). After 6, 24 and 48 hours, ears were collected and processed for RNA extraction. Three Biological replicates per condition were run.
Project description:To determine the modulation of gene expression of Leishmania mexicana(M379)-inoculated BALB/c ears in the presence of promastigote secretory gel (PSG)
Project description:We used Illumina sequencing of poly-A selected RNA of Leishmania mexicana (WHO strain MNYC/BZ/62/M379) culture-adapted promastigotes (PRO), axenic amastigotes (AXA) and intracellular amastigotes (AMA) in mouse bone marrow derived macrophages (BMDM), 24h after infection, to map 5' and 3' ends of Leishmania transcripts and determine transcript abundances. The AMA samples were prepared from total RNA of infected macrophages thus containing a mixture of leishmanial and murine RNA transcripts. We also sequenced poly-A selected RNA from uninfected BMDMs. Three biological replicates per sample.
Project description:We examined the Leishmania mexicana transcriptome to identify differentially regulated mRNAs using high-density whole-genome oligonucleotide microarrays designed from the genome data of a closely related species, Leishmania major. Statistical analysis on array hybridization data representing 8156 predicted coding regions revealed 288 genes (3.5% of all genes) whose steady-state mRNA levels meet criteria for differential regulation between promastigotes and lesion-derived amastigotes. Interestingly, sample comparison of promastigotes to axenic amastigotes resulted in only 17 genes (0.2%) that meet the same statistical criteria for differential regulation. The reduced number of regulated genes is a consequence of an increase in the magnitude of the transcript levels in cells under axenic conditions. The expression data for a subset of genes was validated by quantitative PCR. Our studies show that interspecies hybridization on microarrays can be used to analyze closely related protozoan parasites, that axenic culture conditions may alter amastigote transcript abundance, and that there is only a relatively modest change in abundance of a few mRNAs between morphologically distinct promastigote and amastigote cultured cells. Leishmania may represent an alternative paradigm for eukaryotic differentiation with minimal contributions from changes in mRNA abundance. Keywords: RNA expression profiling
Project description:The aim of this study was to identify differences in the NK-cell response towards Leishmania mexicana lipophosphoglycan (LPG) between patients with localized (LCL) and diffuse (DCL) cutaneous leishmaniasis through gene expression profiling, in an attempt to pinpoint alterations in the signaling pathways responsible for the NK-cell dysfunction in patients with DCL. To determine the gene expression profiling in non stimulated and LPG-stimulated NK cells we include samples of controls, LCL and DCL patients. We performed microarrays (Human Gene 1.0 ST, Affymetrix) to identify differentially expressed transcripts between non stimulated and LPG-stimulated NK cells between controls, LCL and DCL samples.
Project description:Previous studies in Leishmania mexicana have identified the cytoskeletal protein KHARON as being important for both flagellar trafficking of the glucose transporter GT1 and for successful cytokinesis and survival of infectious amastigote forms inside mammalian macrophages. KHARON is located in three distinct regions of the cytoskeleton: the base of the flagellum, the subpellicular microtubules, and the mitotic spindle. To deconvolve the different functions for KHARON, we have identified two partner proteins, KHAP1 and KHAP2, that associate with KHARON. KHAP1 is located only in the subpellicular microtubules, while KHAP2 is located at the subpellicular microtubules and the base of the flagellum. Both the KHAP1 and KHAP2 null mutants are unable to execute cytokinesis but are able to traffic GT1 to the flagellum. These results confirm that KHARON assembles into distinct functional complexes and that the subpellicular complex is essential for cytokinesis and viability of disease-causing amastigotes but not for flagellar membrane trafficking.