Project description:We performed a large-scale genome-wide characterisation of indels generated following editing with CRISPR/Cas9. We used pools of sgRNAs and performed targeted capture and sequencing of the edited regions in HepG2 cells.
Project description:We engineered m6A methyltransferase or demethylases with CRISPR-Cas9 to achieve site-specific editing of m6A. The resultant m6A editors can be programmed with a guide RNA, allowing functional comparison of single site methylation in different mRNA regions.
Project description:Provided data came from a detailed study on Nicotiana benthamiana 16c plants where we use Tobacco Rattle Virus (TRV) as a molecular switch to change the chromatin state of a reporter gene (P35S::GFP) from an actively transcribed to a transcriptionally silenced state. Our approach enables us to interrogate different chromatin states of the same locus with the same set of CRISPR/Cas9 genome editing reagents and systematically describe the effect of chromatin state on the frequency and type of mutations induced at various Cas9 targets in a huge set of independently edited cells.
Project description:CRISPR-Cas9 delivery by AAV holds promise for gene therapy but faces critical barriers due to its potential immunogenicity and limited payload capacity. Here, we demonstrate genome engineering in postnatal mice using AAV-split-Cas9, a multi-functional platform customizable for genome-editing, transcriptional regulation, and other previously impracticable AAV-CRISPR-Cas9 applications. We identify crucial parameters that impact efficacy and clinical translation of our platform, including viral biodistribution, editing efficiencies in various organs, antigenicity, immunological reactions, and physiological outcomes. These results reveal that AAV-CRISPR-Cas9 evokes host responses with distinct cellular and molecular signatures, but unlike alternative delivery methods, does not induce detectable cellular damage in vivo. Our study provides a foundation for developing effective genome therapeutics mRNA-Seq from muscles (9 samples; 3 mice x 3 conditions) and lymph nodes (9 samples; 3 mice x 3 conditions).
Project description:Using CRISPR/Cas9 for allele-specific genome editing we phenocopied AA symptomatic patched hair loss in mice engineered to carry the Cchcr1 risk allele.
Project description:CRISPRs and TALENs are efficient systems for gene editing in many organisms including plants. In many cases the CRISPR-Cas or TALEN modules are expressed in the plant cell only transiently. Theoretically, transient expression of the editing modules should limit unexpected effects compared to stable transformation. However, very few studies have measured the off-target and unpredicted effects of editing strategies on the plant genome, and none of them have compared these two major editing systems. We conducted a comprehensive genome-wide investigation of off-target mutations using either a CRISPR-Cas9 or a TALEN strategy. We observed a similar number of SNVs and InDels for the two editing strategies compared to control non-transfected plants, with an average of 8.25 SNVs and 19.5 InDels for the CRISPR-edited plants, and an average of 17.5 SNVs and 32 InDels for the TALEN-edited plants. Interestingly, a comparable number of SNVs and InDels could be detected in the PEG-treated control plants. This shows that except for the on-target modifications, the gene editing tools used in this study did not show a significant off-target activity nor unpredicted effects on the genome, and that the PEG treatment in itself was probably the main source of mutations found in the edited plants.
Project description:CRISPR-Cas9 genome editing has enabled advanced T cell therapies, but occasional loss of the targeted chromosome remains a safety concern. To investigate whether Cas9-induced chromosome loss is a universal phenomenon and evaluate its clinical significance, we conducted a systematic analysis in primary human T cells. Arrayed and pooled CRISPR screens revealed that chromosome loss was generalizable across the genome and resulted in partial and entire loss of the chromosome, including in pre-clinical chimeric antigen receptor T cells. T cells with chromosome loss persisted for weeks in culture, implying the potential to interfere with clinical use. A modified cell manufacturing process, employed in our first-in-human clinical trial of Cas9-engineered T cells, dramatically reduced chromosome loss while largely preserving genome editing efficacy. Expression of p53 correlated with protection from chromosome loss observed in this protocol, suggesting both a mechanism and strategy for T cell engineering that mitigates this genotoxicity in the clinic.
Project description:CRISPR-Cas9 genome editing has enabled advanced T cell therapies, but occasional loss of the targeted chromosome remains a safety concern. To investigate whether Cas9-induced chromosome loss is a universal phenomenon and evaluate its clinical significance, we conducted a systematic analysis in primary human T cells. Arrayed and pooled CRISPR screens revealed that chromosome loss was generalizable across the genome and resulted in partial and entire loss of the chromosome, including in pre-clinical chimeric antigen receptor T cells. T cells with chromosome loss persisted for weeks in culture, implying the potential to interfere with clinical use. A modified cell manufacturing process, employed in our first-in-human clinical trial of Cas9-engineered T cells, dramatically reduced chromosome loss while largely preserving genome editing efficacy. Expression of p53 correlated with protection from chromosome loss observed in this protocol, suggesting both a mechanism and strategy for T cell engineering that mitigates this genotoxicity in the clinic.
Project description:CRISPR-Cas9 genome editing has enabled advanced T cell therapies, but occasional loss of the targeted chromosome remains a safety concern. To investigate whether Cas9-induced chromosome loss is a universal phenomenon and evaluate its clinical significance, we conducted a systematic analysis in primary human T cells. Arrayed and pooled CRISPR screens revealed that chromosome loss was generalizable across the genome and resulted in partial and entire loss of the chromosome, including in pre-clinical chimeric antigen receptor T cells. T cells with chromosome loss persisted for weeks in culture, implying the potential to interfere with clinical use. A modified cell manufacturing process, employed in our first-in-human clinical trial of Cas9-engineered T cells, dramatically reduced chromosome loss while largely preserving genome editing efficacy. Expression of p53 correlated with protection from chromosome loss observed in this protocol, suggesting both a mechanism and strategy for T cell engineering that mitigates this genotoxicity in the clinic.