Project description:The extreme environments of the Tibetan Plateau offer significant challenges to human survival, demanding novel adaptations. While the role of biological and agricultural adaptations in enabling early human colonization of the plateau has been widely discussed, the contribution of pastoralism is less well understood, especially the dairy pastoralism that has historically been central to Tibetan diets. Here, we analyze preserved proteins from the dental calculus of 40 ancient individuals to report the earliest direct evidence of dairy consumption on the Tibetan Plateau. Our palaeoproteomic results demonstrate that dairy pastoralism began on the higher plateau by approximately 3,500 years ago, more than 2,000 years earlier than the recording of dairying in historical sources. With less than 1% of the Tibetan Plateau dedicated to farmland, pastoralism and the milking of ruminants were essential for large-scale human expansion into agriculturally-marginal regions that make up the majority of the plateau. Dairy pastoralism allowed conversion of abundant grasslands into nutritional human food, which facilitating adaptation in the face of extreme climatic and altitudinal pressures, and maximizing the land area available for long-term human occupation of the “roof of the world”.
Project description:A dentine sample from a previously unknown hominin specimen deriving from the Tibetan Plateau was analyzed using LC-MS/MS in order to characterize its proteome, protein damage characteristics, and phylogenetic affinities to known Late Pleistocene hominin clades (humans, Neanderthals, Denisovans).
Project description:Background: Responses to hypoxia have been investigated in many species; however, comparative study between conspecific geographical populations in different altitude regions is rare, especially for invertebrates . The migratory locust, Locusta migratoria, is widely distributed both on high-altitude Tibetan Plateau (TP) and on low-altitude North China Plain (NP). TP locusts have inhabited Tibetan Plateau since Quaternary glaciations events and thus probably have evolved superior capacity to deal with hypoxia. Results: Here we compared the hypoxic responses of TP and NP locusts from morphological, behavioral and physiological perspectives. We found that TP locusts were more tolerant of extreme hypoxia than NP locusts, with a lower proportion exhibiting stupor, a faster recovery time, and higher respiration rates. We compared the transcriptional profiles of field TP and NP locusts and found that their differences were possibly attributed to a combination of multiple factors, e.g. oxygen, UV radiation, temperature and nutrition. To evaluate why TP locusts respond to extreme hypoxia differently from NP locusts, we subjected them to extreme hypoxia and compared their transcriptional responses. We found that the aerobic metabolism was more active in TP locusts than in NP locusts. RNAi disruption of PDHE1b, an entry gene from glycolysis to TCA cycle, increased the ratio of stupor in Tibetan locusts and decreased the ATP content of Tibetan locusts in hypoxia, confirming the significant importance of this metabolic branch for TP locusts to conquer hypoxia. Conclusions: Here we show that TP locusts are better tolerant of hypoxia than NP locusts and the better capacity to modulate primary metabolism in TP locusts contributes to their superior tolerance of hypoxia compared to NP locusts. FIELD POPULATION: TP locusts vs. NP locusts;direct comparison on 6 separate microarrays; each microarray compares one biological replicate; each biological replicate contains 10 individuals. LAB POPULATION: hypoxia-treated TP locusts vs TP locusts in normoxia; hypoxia-treated NP locusts vs NP locusts in normoxia; direct comparison on 6 separate microarrays; each microarray compares one biological replicate; each biological replicate contains 10 individuals.
Project description:Background: Responses to hypoxia have been investigated in many species; however, comparative study between conspecific geographical populations in different altitude regions is rare, especially for invertebrates . The migratory locust, Locusta migratoria, is widely distributed both on high-altitude Tibetan Plateau (TP) and on low-altitude North China Plain (NP). TP locusts have inhabited Tibetan Plateau since Quaternary glaciations events and thus probably have evolved superior capacity to deal with hypoxia. Results: Here we compared the hypoxic responses of TP and NP locusts from morphological, behavioral and physiological perspectives. We found that TP locusts were more tolerant of extreme hypoxia than NP locusts, with a lower proportion exhibiting stupor, a faster recovery time, and higher respiration rates. We compared the transcriptional profiles of field TP and NP locusts and found that their differences were possibly attributed to a combination of multiple factors, e.g. oxygen, UV radiation, temperature and nutrition. To evaluate why TP locusts respond to extreme hypoxia differently from NP locusts, we subjected them to extreme hypoxia and compared their transcriptional responses. We found that the aerobic metabolism was more active in TP locusts than in NP locusts. RNAi disruption of PDHE1b, an entry gene from glycolysis to TCA cycle, increased the ratio of stupor in Tibetan locusts and decreased the ATP content of Tibetan locusts in hypoxia, confirming the significant importance of this metabolic branch for TP locusts to conquer hypoxia. Conclusions: Here we show that TP locusts are better tolerant of hypoxia than NP locusts and the better capacity to modulate primary metabolism in TP locusts contributes to their superior tolerance of hypoxia compared to NP locusts.
Project description:The altitude gradient limits the growth and distribution of alpine plants.Alpine plants have developed strategies to survive the extremely cold conditions prevailing at high altitudes; however, the mechanism underlying the evolution of these strategies remains unknown. The alpine plant Potentilla saundersiana is widespread in the Northwestern Tibetan Plateau. In this study, we conducted a comparative proteomics analysis to investigate the dynamic patterns of protein expression of P. saundersiana located at five different altitudes. We detected and functionally characterized 118 differentially expressed proteins. Our study confirmed that increasing levels of antioxidant proteins, and their respective activities, and accumulation of primary metabolites, such as proline and sugar, confer tolerance to the alpine environment in P. saundersiana. Proteins species associated with the epigenetic regulation of DNA stability and post-translational protein degradation were also involved in this process. Furthermore, our results showed that P. saundersiana modulated the root architecture and leaf phenotype to enhance adaptation to alpine environmental stress through mechanisms that involved hormone synthesis and signal transduction, particularly the cross-talk between auxin and strictosidine. Based on these findings, we conclude that P. saundersiana uses multiple strategies to adapt to the high-altitude environment of the Northwestern Tibetan Plateau.
Project description:Genetic and limited palaeoanthropological data suggest that Denisovans, a sister group to Neanderthals, were once widely distributed in eastern Eurasia, likely stretching from high-latitude Siberia, to the high-altitude Tibetan Plateau, to the low-latitude subtropical regions of southeast Asia. This suggests that Denisovans were capable of adapting to a highly diverse range of environments, but archaeological evidence for this is currently limited. As a result, we know little about their behaviours, including subsistence strategies, across the vast areas they likely occupied. Here, we describe the late Middle to Late Pleistocene faunal assemblage from Baishiya Karst Cave on the Tibetan Plateau, where the Xiahe Denisovan mandible and Denisovan sedimentary mtDNA were found, by integrating proteomic screening into traditional zooarchaeological analysis. The results indicate that the faunal assemblage consists of a diverse range of animals, including megafauna, large mammals, small mammals and birds, but is dominated by medium-sized herbivores. Frequent cut marks and percussion traces on bone surfaces throughout the assemblage, even on carnivore bones, indicate that Denisovan activities in Baishiya Karst Cave from at least 190 to 30 thousand years are responsible for the fauna assemblage accumulation. Thorough utilization of acquired animal resources, even perhaps the fur, too, might have helped Denisovans to survive through the last two glacial-interglacial cycles on the cold high-altitude Tibetan Plateau. Our results shed new light on Denisovan behaviours and their adaptations to the diverse and fluctuated environments in the Middle and Late Pleistocene eastern Eurasia.
Project description:Long term-exposed to high altitude, the increased numbers of red blood cells tend to stabilize to a certain extend in most people, but someone will occur over-increasing in number of red blood cells, which cause a serious of clinical symptoms and signs, and this is high altitude polycythemia. EPO-EPOR system may be the main reasons for erythroid progenitor cell proliferation and differentiation in early exposion to plateau, but, in the late, there may be other factors involved in the regulation of erythropoiesis in bone marrow, multiple factors working together lead to excessive red blood cell proliferation. We compared gene expression profiling of leukocytes in peripheral blood from high altitude polycythemia patients with those from matched controls. Subjects consisting of 5 masculine Han Chinese patients with HAPC (diagnosed according to international consensus statement on HAPC) and 5 matched controls, were migrants at River of TUOTUO area (Qinghai-Tibetan Plateau, 4550 m). Each of the five HAPC patients was matched to each of the control: gender, nationality, birthplace, duration migrating to plateau, height of location, work intensity. Peripheral blood samples were obtained at 4550m plateau from above subjects. Total RNA was extracted from peripheral blood leucocytes. The gene expression profilings were analysed by Human Genome U133 Plus 2.0 Array.