Project description:During an incompatible or compatible interaction between rice (Oryza sativa) and the Asian rice gall midge (Orseolia oryzae), a lot of genetic reprogamming occurs in the plant host We used microarray to know the changes occuring in the resistant host (indica rice variety RP2068-18-3-5) when challenged by avirulent biotype of gall midge (GMB 1). During this incompatible interaction the resistance in the host is manifested by a hypersenstive response. Using microarray data, we identified distinct classes of up- and down-regulated genes during this process.
Project description:Drought is the most serious abiotic stress that hinders rice production under rainfed conditions. Breeding for deep rooting is a promising strategy to improve the root system architecture in shallow-rooting rice cultivars to avoid drought stress. We analysed the quantitative trait loci (QTLs) for the ratio of deep rooting (RDR) in three F? mapping populations derived from crosses between each of three shallow-rooting varieties ('ARC5955', 'Pinulupot1', and 'Tupa729') and a deep-rooting variety, 'Kinandang Patong'. In total, we detected five RDR QTLs on chromosomes 2, 4, and 6. In all three populations, QTLs on chromosome 4 were found to be located at similar positions; they explained from 32.0% to 56.6% of the total RDR phenotypic variance. This suggests that one or more key genetic factors controlling the root growth angle in rice is located in this region of chromosome 4.