Project description:The yellow stem borer Scirpophaga incertulas is the dominant pest of rice in tropical Asia. However, the lack of genomic resources makes it difficult to understand their invasiveness and ecological adaptation. A high-quality chromosome-level genome of S. incertulas, a monophagous rice pest, was assembled by combining Illumina short reads, PacBio HiFi long sequencing, and Hi-C scaffolding technology. The final genome size was 695.65 Mb, with a scaffold N50 of 28.02 Mb, and 93.50% of the assembled sequences were anchored to 22 chromosomes. BUSCO analysis demonstrated that this genome assembly had a high level of completeness, with 97.65% gene coverage. A total of 14,850 protein-coding genes and 366.98 Mb of transposable elements were identified. In addition, comparative genomic analyses indicated that chemosensory processes and detoxification capacity may play critical roles in the specialized host preference of S. incertulas. In summary, the chromosome-level genome assembly of S. incertulas provides a valuable genetic resource for understanding the biological characteristics of its invasiveness and developing an efficient management strategy.
| S-EPMC10923946 | biostudies-literature
Project description:Antennal transcriptome of Scirpophaga incertulas, Yellow stem borer
Project description:Yellow stem borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), is a major pest of rice in India, that can lead to 20-60% loss in rice production. Effective management of YSB infestation is challenged by the non-availability of adequate source of resistance and poor understanding of resistance mechanisms, thus necessitating studies for generating resources to breed YSB resistant rice and to understand rice-YSB interaction. Here we performed transcritpomics profiling of rice lines with contrasting response to YSB. RNA-sequencing of the susceptible (SM) and tolerant (SM92 lines revealed multiple genes to be differentially regulated upon YSB infestation. Comparative transcriptome analysis revealed a putative candidate gene that was predicted to encode an alpha-amylase inhibitor. Analysis of the transcriptome and metabolite profiles further revealed a possible link between phenylpropanoid metabolism and YSB tolerance.
Project description:The yellow stemborer, Scirpophaga incertulas, is a monophagous pest of rice, attacking the crop from its vegetative to reproductive stages. Microorganisms are crucial in influencing the insect's life cycle, evolution, and ecology, presenting an avenue for understanding and improving management strategies. Present research employed advanced next-generation sequencing technology to investigate the microbiota of S. incertulas, a previously unexplored area for developmental stage associated microbial diversity. The study used 16 S rRNA V3-V4 region amplicon sequencing to determine the diversity of bacteria associated with different developmental stages of S. incertulas. Taxonomically, bacterial communities were classified into 25 phyla, encompassing 46 classes, 101 orders, 197 families, and 364 genera. The major phyla identified were Proteobacteria (39%), Firmicutes (39%), Actinobacteria (11%), and Bacteroidetes (7%), with Proteobacteria being the most predominant across all developmental stages except the larval stage, where Firmicutes took precedence. Moraxellaceae, Bacillaceae, Xanthomonadaceae, Sphingobacteriaceae, and Flavobacteriaceae were predominant families across all the developmental stages. However, in the egg and adult stages, the abundance of Bacillaceae was notably lower, whereas Prevotellaceae found significantly higher in adult stages. Dominant genera across all stages included Acinetobacter, Bacillus, Lactobacillus, Enterococcus, and Pseudomonas. The result showed that the highest number of Operational Taxonomic Units (OTUs) were in the larval stage (426 OTUs), the lowest in adults (251 OTUs), and the egg stage (254 OTUs). This suggests that the microbiota may play a role in the growth and development of S. incertulas. The predicted functional assessment of the associated S. incertulas microbiota revealed that the microbiota primarily participated in metabolic pathways, secondary metabolite biosynthesis, energy metabolism, signaling, and cellular processes. Our findings shed light on the significant variations in the microbial community and their predicted functions present in S. incertulas across developmental stages. The present study findings will help in developing novel microbiota-based management strategies.
| S-EPMC11903862 | biostudies-literature
Project description:A chromosome-level genome assembly of Scirpophaga incertulas
Project description:RNAi is a powerful tool to target the insect genes involved in host-pest interactions. Key insect genes are the choice for silencing to achieve pest derived resistance where resistance genes are not available in gene pool of host plant. In this study, an attempt was made to determine the effect of dsRNA designed from two genes Cytochrome P450 derivative (CYP6) and Aminopeptidase N (APN) of rice yellow stem borer (YSB) on growth and development of insect. The bioassays involved injection of chemically synthesized 5' FAM labeled 21-nt dsRNA into rice cut stems and allowing the larvae to feed on these stems which resulted in increased mortality and observed growth and development changes in larval length and weight compared with its untreated control at 12-15 days after treatment. These results were further supported by observing the reduction in transcripts expression of these genes in treated larvae. Fluorescence detection in treated larvae also proved that dsRNA was readily taken by larvae when fed on dsRNA treated stems. These results from the present study clearly show that YSB larvae fed on dsRNA designed from Cytochrome P450 and Aminopeptidase N has detrimental effect on larval growth and development. These genes can be deployed to develop YSB resistance in rice using RNAi approach.