Project description:The yellow stem borer Scirpophaga incertulas is the dominant pest of rice in tropical Asia. However, the lack of genomic resources makes it difficult to understand their invasiveness and ecological adaptation. A high-quality chromosome-level genome of S. incertulas, a monophagous rice pest, was assembled by combining Illumina short reads, PacBio HiFi long sequencing, and Hi-C scaffolding technology. The final genome size was 695.65 Mb, with a scaffold N50 of 28.02 Mb, and 93.50% of the assembled sequences were anchored to 22 chromosomes. BUSCO analysis demonstrated that this genome assembly had a high level of completeness, with 97.65% gene coverage. A total of 14,850 protein-coding genes and 366.98 Mb of transposable elements were identified. In addition, comparative genomic analyses indicated that chemosensory processes and detoxification capacity may play critical roles in the specialized host preference of S. incertulas. In summary, the chromosome-level genome assembly of S. incertulas provides a valuable genetic resource for understanding the biological characteristics of its invasiveness and developing an efficient management strategy.
| S-EPMC10923946 | biostudies-literature
Project description:A chromosome-level genome assembly of Scirpophaga incertulas
| PRJNA1049343 | ENA
Project description:Antennal transcriptome of Scirpophaga incertulas, Yellow stem borer
Project description:RNAi is a powerful tool to target the insect genes involved in host-pest interactions. Key insect genes are the choice for silencing to achieve pest derived resistance where resistance genes are not available in gene pool of host plant. In this study, an attempt was made to determine the effect of dsRNA designed from two genes Cytochrome P450 derivative (CYP6) and Aminopeptidase N (APN) of rice yellow stem borer (YSB) on growth and development of insect. The bioassays involved injection of chemically synthesized 5' FAM labeled 21-nt dsRNA into rice cut stems and allowing the larvae to feed on these stems which resulted in increased mortality and observed growth and development changes in larval length and weight compared with its untreated control at 12-15 days after treatment. These results were further supported by observing the reduction in transcripts expression of these genes in treated larvae. Fluorescence detection in treated larvae also proved that dsRNA was readily taken by larvae when fed on dsRNA treated stems. These results from the present study clearly show that YSB larvae fed on dsRNA designed from Cytochrome P450 and Aminopeptidase N has detrimental effect on larval growth and development. These genes can be deployed to develop YSB resistance in rice using RNAi approach.
Project description:The yellow stem borer (YSB), Scirpophaga incertulas, is a prominent pest in rice cultivation causing serious yield losses. The larval stage is an important stage in YSB, responsible for maximum infestation. However, limited knowledge exists on the biology and mechanisms underlying the growth and differentiation of YSB. To understand and identify the genes involved in YSB development and infestation, so as to design pest control strategies, we performed de novo transcriptome analysis at the first, third, fifth, and seventh larval developmental stages employing Illumina Hi-seq. High-quality reads (HQR) of ∼229 Mb were assembled into 24,775 transcripts with an average size of 1485 bp. Genes associated with various metabolic processes, i.e., detoxification mechanism [CYP450, GSTs, and carboxylesterases (CarEs)], RNA interference (RNAi) machinery (Dcr-1, Dcr-2, Ago-1, Ago-2, Sid-1, Sid-2, Sid-3, and Sid-1-related gene), chemoreception (CSPs, GRs, OBPs, and ORs), and regulators [transcription factors (TFs) and hormones] were differentially regulated during the developmental stages. Identification of stage-specific transcripts made it possible to determine the essential processes of larval development. Comparative transcriptome analysis revealed that YSB has not evolved much with respect to the detoxification mechanism, but showed the presence of distinct RNAi machinery. The presence of strong specific visual recognition coupled with chemosensory mechanisms supports the monophagous nature of YSB. Designed expressed sequenced tags-simple-sequence repeats (EST-SSRs) will facilitate accurate estimation of the genetic diversity of YSB. This is the first report on characterization of the YSB transcriptome and the identification of genes involved in key processes, which will help researchers and industry to devise novel pest control strategies. This study also opens up a new avenue to develop next-generation resistant rice using RNAi or genome editing approaches.
Project description:Yellow stem borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), is a major pest of rice in India, that can lead to 20-60% loss in rice production. Effective management of YSB infestation is challenged by the non-availability of adequate source of resistance and poor understanding of resistance mechanisms, thus necessitating studies for generating resources to breed YSB resistant rice and to understand rice-YSB interaction. Here we performed transcritpomics profiling of rice lines with contrasting response to YSB. RNA-sequencing of the susceptible (SM) and tolerant (SM92 lines revealed multiple genes to be differentially regulated upon YSB infestation. Comparative transcriptome analysis revealed a putative candidate gene that was predicted to encode an alpha-amylase inhibitor. Analysis of the transcriptome and metabolite profiles further revealed a possible link between phenylpropanoid metabolism and YSB tolerance.