Project description:The majority of bacterial genomes have high coding efficiencies, but there are an few genomes of the intracellular bacteria that have low gene density. The genome of the endosymbiont Sodalis glossinidius contains almost 50% pseudogenes containing mutations that putatively silence them at the genomic level. We have applied multiple omic strategies: combining single molecule DNA-sequencing and annotation; stranded RNA-sequencing and proteome analysis to better understand the transcriptional and translational landscape of Sodalis pseudogenes, and potential mechanisms for their control. Between 53% and 74% of the Sodalis transcriptome remains active in cell-free culture. Mean sense transcription from Coding Domain Sequences (CDS) is four-times greater than that from pseudogenes. Core-genome analysis of six Illumina sequenced Sodalis isolates from different host Glossina species shows pseudogenes make up ~40% of the 2,729 genes in the core genome, suggesting are stable and/or Sodalis is a recent introduction across the Glossina genus as a facultative symbiont. These data further shed light on the importance of transcriptional and translational control in deciphering host-microbe interactions, and demonstrate that pseudogenes are more complex than a simple degrading DNA sequence. For this reason, we show that combining genomics, transcriptomics and proteomics represents an important resource for studying prokaryotic genomes with a view to elucidating evolutionary adaptation to novel environmental niches.
Project description:Transcriptome analysis of Sodalis glossinidius derived from uninfected (controls) and Trypanosoma brucei gambiense infection self cleared Glossina palpalis gambiensis. 10 days after infectived blood meal, flies anal drop were analysed by PCR to isolate the infected self cleared flies. Then, uninfected (controls) and infection self cleared 10 days-flies midgut were dissected for RNA extraction.
Project description:Transcriptome analysis of Sodalis glossinidius derived from Trypanosoma brucei gambiense infection self cleared and infected Glossina palpalis gambiensis. At 3 time points (3, 10 and 20 days) after infectived blood meal, flies were analysed by PCR to isolate the infected and infection self cleared flies. Then, infected and infection self cleared flies midgut were dissected for RNA extraction.
Project description:Transcriptome analysis of Sodalis glossinidius derived from uninfected (controls) and Trypanosoma brucei gambiense infection self cleared Glossina palpalis gambiensis. 10 days after infectived blood meal, flies anal drop were analysed by PCR to isolate the infected self cleared flies. Then, uninfected (controls) and infection self cleared 10 days-flies midgut were dissected for RNA extraction. Total RNAs were extracted from 8 samples including: 4 control and 4 infection self-cleared flies.
Project description:Transcriptome analysis of Sodalis glossinidius derived from Trypanosoma brucei gambiense infection self cleared and infected Glossina palpalis gambiensis. At 3 time points (3, 10 and 20 days) after infectived blood meal, flies were analysed by PCR to isolate the infected and infection self cleared flies. Then, infected and infection self cleared flies midgut were dissected for RNA extraction. Total RNAs were extracted at 3 time points (3, 10 and 20 days) from 24 samples including, for each time, 4 infected and 4 infection self-cleared flies.
Project description:The extrachromosomal DNA of Sodalis glossinidius from two tsetse fly species was sequenced and contained four circular elements: three plasmids, pSG1 (82 kb), pSG2 (27 kb), and pSG4 (11 kb), and a bacteriophage-like pSG3 (19 kb) element. The information suggests S. glossinidius is evolving towards an obligate association with tsetse flies.