Project description:Domestication caused significant differences in morphology and behavior between wild and domestic animals, and gene expression changes played an important role in this event. circRNA is a class of non-coding RNA that exerts a wide range of functions in biological processes through the regulation of gene expression. However, the regulatory role of circRNA in the process of domestication is still unclear. Here, we analyzed circRNA expression patterns in the prefrontal cortices of wild boar and domestic pig to determine the potential role of circRNAs in domestication. We identified a total of 11,375 circRNAs and found that 349 and 354 circRNAs were up-regulated in wild boar and Rongchang pig, respectively. This study lays the groundwork for exploring the regulatory role of circRNA in the process of domestication and provides new insights that contribute to further investigation of the molecular mechanism of pig domestication.
Project description:Domestication of pig results in modifications of many traits, including fatness traits, which are important in pig production since they have effect on meat quality, fattening efficiency, reproduction and immunity.In this study, we investigate 3D genome organization and transcriptomic characterization of adipose tissues (ATs) between wild boars and Bama pig, a typical indigenous domestic pig in China, to uncover molecular mechanisms of fatness-phenotypic shifts.
Project description:For gaining additional insights into the composition of the testicular proteome of the domestic pig (Sus scrofa domestica), we conducted 2DE-MS. Two-dimensional SDS PAGE was run on testicular lysates of three boars, with three gels per boar. Upon matching across gels, we arbitrarily selected protein spots for mass spectrometry analysis. Excised slices were vacuum dried and soaked with digestion buffer containing trypsin (0.01 μg/μl), followed by overnight incubation at 37°C in the same buffer without trypsin. Subsequently, peptides were extracted in solvents of increasing acetonitrile content, by sonication. Upon vacuum-centrifugation, peptides were reconstituted in 0.1% formic acid (FA). Following this, peptides were fractionated by reversed phase liquid chromatography (C18; buffer A: 0.1% FA dissolved in HPLC-H2O; buffer B: 0.1% FA, dissolved in CAN; flow-rate: 0.4 µL/min; gradient: 2-30% in 30 minutes). Eluted peptides were injected via an electrospray ionization interface into a Q-TOF mass spectrometer (one boar, Q TOF Ultima, Micromass/Waters, Manchester, UK) and an ion-trap mass spectrometer (two other boars, XCT ion-trap, Agilent Technologies, Waldbronn, Germany). We used ProteomeDiscoverer 2.4 (Thermo Fisher Scientific, San Jose, USA) for peptide and protein identification. Using Sequest HT, we searched peak lists (*.mgf) against the Sus scrofa reference proteome database (UniProt Proteome ID: UP000008227, 49,793 proteins).
Project description:By leveraging single-cell/nuclei RNA sequencing, we generate the first single-cell transcriptome atlas of over 200,000 pig cells from 20 tissues/organs.
Project description:By leveraging single-cell/nuclei RNA sequencing, we generate the first single-cell transcriptome atlas of over 200,000 pig cells from 20 tissues/organs, as well as cultured ECs