Project description:The microsporidia Nosema ceranae are intracellular parasites that proliferate in the midgut epithelial cells of honey bees (Apis mellifera). To analyze the pathological effects of those microsporidia, we orally infected honey bee workers 7 days after their emergence. Bees were flash frozen 15 days after the infection. Then, the effects on the gut ventriculi were analyzed and compared to non-infected (control) bees.
Project description:We studied the molecular mechanisms underlying the impact of pollen nutrients on honey bee (Apis mellifera) health and how those nutrients improve resistance to parasites. Using digital gene expression, we determined the changes in gene expression induced by pollen intake in worker bees parasitized or not by the mites Varroa destructor, known for suppressing immunity and decreasing lifespan of bees.
Project description:New insights into the transcriptional regulation of behavioral plasticity in honey bees gained by analyzing brain genes expression with the CAGEscan technique that involves identification of specific transcription factors, cis regulatory motifs and alternate transcriptional start sites Examination of 2 different types of Honey Bee Apis Mellifera samples (Nurse and Foragers)
Project description:The microsporidia Nosema ceranae are intracellular parasites that proliferate in the midgut epithelial cells of honey bees (Apis mellifera). To analyze the pathological effects of those microsporidia, we orally infected honey bee workers 7 days after their emergence. Bees were flash frozen 15 days after the infection. Then, the effects on the gut ventriculi were analyzed and compared to non-infected (control) bees. Comparisons of control vs Nosema ceranae bees
Project description:Our aims in this study were: 1) to identify the miRNAs of the bumble bees Bombus terrestris and B. impatiens; 2) to compare the total numbers of miRNAs between both bumble bee species and between them and the honey bee, Apis mellifera; and 3) to test whether the sequences and expression patterns of miRNAs were conserved between species. To investigate each of these aims we used miRNA-seq (deep sequencing of miRNA-enriched libraries) in B. terrestris, and bioinformatics prediction programs to identify miRNAs in both Bombus species. We identified 131 miRNAs in B. terrestris, and 114 in B. impatiens; of these, 17 were new miRNAs that had not previously been sequenced in any species. We found a striking level of difference in the miRNAs present between Bombus and A. mellifera, with 103 miRNAs in A. mellifera not being present in the genomes of the two bumble bees.
Project description:We studied the molecular mechanisms underlying the impact of pollen nutrients on honey bee (Apis mellifera) health and how those nutrients improve resistance to parasites. Using digital gene expression, we determined the changes in gene expression induced by pollen intake in worker bees parasitized or not by the mites Varroa destructor, known for suppressing immunity and decreasing lifespan of bees. bees with or without verroa, and fed or not fed pollen
Project description:Using honey bee (Apis mellifera) as a model, we confirmed that honeybee queens with big ovaries lay smaller eggs in colonies with more worker bees.
Project description:Plant pollination by the western honey bee Apis mellifera is an irreplaceable agroecological and economic cornerstone currently under threat. Recent colony loss has been consistently linked to the increased prevalence of deformed wing virus (DWV), an Iflavirus transmitted from the ecoparasitic mite Varros destructor. While DWV has been detected in the honey bee brain and causally linked to behavioral impairment, the molecular impact of infection on brain gene expression is largely unknown. Recently, we discovered that two published and two new brain transcriptomic studies conducted in our lab contained DWV contamination in over 99% of sequenced honey bee samples. This unanticipated finding sharply contrasted with the experimental paradigms of these four studies, as no physical or behavioral signs of DWV were detected in any of the 335 individual honey bees sampled. We took this opportunity to perform a meta-analysis and test the hypothesis that DWV influences brain gene expression, a relationship which could be linked to the massive depopulation events observed around the world. Results from our study support commonalities in the molecular consequences of DWV in the honey bee brain and implicate specific genes and biological processes associated with infection. Next, we used single-cell RNA-Sequencing to implicate glia as active responders to viral infection. Finally, we performed viral gene expression analysis on a subset of samples and found DWV type A as well as a previously unreported A-B recombinant in the brain. We present this meta-analysis as a first step toward addressing a potential missing link between viral infection and behavior in honey bees.