Project description:The microsporidia Nosema ceranae are intracellular parasites that proliferate in the midgut epithelial cells of honey bees (Apis mellifera). To analyze the pathological effects of those microsporidia, we orally infected honey bee workers 7 days after their emergence. Bees were flash frozen 15 days after the infection. Then, the effects on the gut ventriculi were analyzed and compared to non-infected (control) bees.
Project description:We studied the molecular mechanisms underlying the impact of pollen nutrients on honey bee (Apis mellifera) health and how those nutrients improve resistance to parasites. Using digital gene expression, we determined the changes in gene expression induced by pollen intake in worker bees parasitized or not by the mites Varroa destructor, known for suppressing immunity and decreasing lifespan of bees.
Project description:New insights into the transcriptional regulation of behavioral plasticity in honey bees gained by analyzing brain genes expression with the CAGEscan technique that involves identification of specific transcription factors, cis regulatory motifs and alternate transcriptional start sites Examination of 2 different types of Honey Bee Apis Mellifera samples (Nurse and Foragers)
Project description:The mite Varroa destructor is currently the greatest threat to apiculture as it is causing a global decrease in honey bee colonies. However, it rarely causes serious damage to its native hosts, the eastern honey bees Apis cerana. To better understand the mechanism of resistance of A. cerana against the V. destructor mite, we profiled the metabolic changes that occur in the honey bee brain during V. destructor infestation. Brain samples were collected from infested and control honey bees and then measured using an untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based global metabolomics method, in which 7918 and 7462 ions in ESI+ and ESI- mode, respectively, were successfully identified. Multivariate statistical analyses were applied, and 64 dysregulated metabolites, including fatty acids, amino acids, carboxylic acid, and phospholipids, amongst others, were identified. Pathway analysis further revealed that linoleic acid metabolism; propanoate metabolism; and glycine, serine, and threonine metabolism were acutely perturbed. The data obtained in this study offer insight into the defense mechanisms of A. cerana against V. destructor mites and provide a better method for understanding the synergistic effects of parasitism on honey bee colonies.
Project description:The microsporidia Nosema ceranae are intracellular parasites that proliferate in the midgut epithelial cells of honey bees (Apis mellifera). To analyze the pathological effects of those microsporidia, we orally infected honey bee workers 7 days after their emergence. Bees were flash frozen 15 days after the infection. Then, the effects on the gut ventriculi were analyzed and compared to non-infected (control) bees. Comparisons of control vs Nosema ceranae bees
Project description:We studied the molecular mechanisms underlying the impact of pollen nutrients on honey bee (Apis mellifera) health and how those nutrients improve resistance to parasites. Using digital gene expression, we determined the changes in gene expression induced by pollen intake in worker bees parasitized or not by the mites Varroa destructor, known for suppressing immunity and decreasing lifespan of bees. bees with or without verroa, and fed or not fed pollen
Project description:It is estimated that animals pollinate 87.5% of flowering plants worldwide and that managed honey bees (Apis mellifera) account for 30-50% of this ecosystem service to agriculture. In addition to their important role as pollinators, honey bees are well-established insect models for studying learning and memory, behaviour, caste differentiation, epigenetic mechanisms, olfactory biology, sex determination and eusociality. Despite their importance to agriculture, knowledge of honey bee biology lags behind many other livestock species. In this study we have used scRNA-Seq to map cell types to different developmental stages of the worker honey bee (prepupa at day 11 and pupa at day 15), and sought to determine their gene signatures and thereby provide potential functional annotations for as yet poorly characterized genes. To identify cell type populations we examined the cell-to-cell network based on the similarity of the single-cells’ transcriptomic profiles. Grouping similar cells together we identified 63 different cell clusters of which 15 clusters were identifiable at both stages. To determine genes associated with specific cell populations or with a particular biological process involved in honey bee development, we used gene co-expression analysis. We combined this analysis with literature mining, the honey bee protein atlas and Gene Ontology analysis to determine cell cluster identity. Of the cell clusters identified, 9 were related to the nervous system, 7 to the fat body, 14 to the cuticle, 5 to muscle, 4 to compound eye, 2 to midgut, 2 to hemocytes and 1 to malpighian tubule/pericardial nephrocyte. To our knowledge, this is the first whole single cell atlas of honey bees at any stage of development and demonstrates the potential for further work to investigate their biology of at the cellular level.
Project description:To explore brain neuropeptidic functions in behavioral regulation, a label-free quantitative strategy was employed to compare neuropeptidomic variations between behavioral phenotypes (nurse bees, nectar foragers, and pollen foragers) and the two honeybee species (Apis mellifera ligustica and Apis cerana cerana).