Project description:We report the application of transcriptome sequencing technology for high-throughput profiling of Serratia marcescens for producing prodigiosin. By obtaining over 163 million bases of sequence from Serratia marcescens genome DNA, we generated transcriptome -state maps of Serratia marcescens 12h cells, 24h cells, and 36h cells at 30C and 37C,respectively. We explored the mechanism of S. marcescens response temperature regulation at the transcription level through transcriptome sequencing technology. We found that the pig gene cluster at low temperature would favor at the transcriptional level, however, higher temperature resulting in instability and loss of enzyme activity. Numerous amino acid metabolic pathways involved in prodigiosin biosynthesis in S. marcescens responded to temperature changes, and metabolic fluxes were directed towards prodigiosin biosynthesis. At the same time, quorum sensing, two-component regulatory system and sRNA were stimulated by temperature to regulate PG biosynthesis and involve strain virulence and exclusive genes. Moreover, inhibition factors was the one reason for S. marcescens incapable synthesis of prodigiosin at 37C. This study laid a good foundation for understanding the biological functions of prodigiosin, improving the temperature tolerance of industrial strains, and excavating temperature-sensitive regulatory elements.
Project description:In order to identify mRNA and sRNAs associated with the RNA-binding protein Hfq in Serratia marcescens strain Db10, Hfq-bound RNA was immunoprecipitated from a strain encoding an Hfq-3FLAG fusion protein at the normal location and sequenced, in parallel with the wild type strain (no fusion) as negative control. Additionally global transcriptional start site mapping was performed on total RNA, with or without TEX treatment, isolated from wild type Serratia marcescens. The data was used to identify regions of mRNA and sRNAs associated with Hfq in this organism. Associated work in Serratia marcescens Db10, an opportunistic bacterial pathogen, has shown that Hfq is essential for virulence in several models and exerts a wide-ranging impact on the transcriptome and, particularly, genes encoding virulence factors.
Project description:In order to identify changes in the global mRNA transcriptome caused by deletion of the RNA-binding protein Hfq in Serratia marcescens, total mRNA was isolated from wild type Serratia marcescens Db10 and an otherwise isogenic strain carrying an in-frame deletion of the hfq gene (SMDB11_4482) and analysed by RNAseq. Four independent biological replicates were sequenced for each strain using the Illumina HiSeq platform. The data was used to identify the nature and extent of changes in transcript level between the two strains and to inform on the role of Hfq in virulence of Serratia marcescens, an opportunist bacterial pathogen.
Project description:The EepR protein is a two-component response regulator protein in the bacterium Serratia marcescens. Mutation of the eepR gene results in pleiotropic changes including reduced expression of secondary metabolites and proteases.
Project description:The GumB protein is an IgaA-family member that negatively regulates the Rcs stress response system in the bacterium Serratia marcescens. Mutation of the gumB gene results in increased RCs system activity of numerous genes including those involved in flagellar based motility and capsular polysaccharide formation.