Project description:Microvesicles (MEVs) were added on the Caco2 cells grown for 21 days on the insert until monolayer confluence. Triplicate samples for the MEVs treated (T1, T2, T3) and Triplicate samples for non-treated samples (C1, C2, C3) were processed for RNA extraction using Trizol method. Finally, RNA samples were DNase treated and cleaned with RNeasy MinElute Cleanup Kit (Qiagen) samples. Purified RNA was sequenced at Genome Québec (Montreal, Canada) and sequencing was performed using an Illumina NovaSeq PE100 sequencer.
Project description:Glioblastoma tumour cells release microvesicles (exosomes) containing mRNA, miRNA and angiogenic proteins. These microvesicles are taken up by normal host cells, such as brain microvascular endothelial cells. By incorporating an mRNA for a reporter protein into these microvesicles, we demonstrate that messages delivered by microvesicles are translated by recipient cells. These microvesicles are also enriched in angiogenic proteins and stimulate tubule formation by endothelial cells. Tumour-derived microvesicles therefore serve as a means of delivering genetic information and proteins to recipient cells in the tumour environment. Glioblastoma microvesicles also stimulated proliferation of a human glioma cell line, indicating a self-promoting aspect. Messenger RNA mutant/variants and miRNAs characteristic of gliomas could be detected in serum microvesicles of glioblastoma patients. The tumour-specific EGFRvIII was detected in serum microvesicles from 7 out of 25 glioblastoma patients. Thus, tumour-derived microvesicles may provide diagnostic information and aid in therapeutic decisions for cancer patients through a blood test.
Project description:mRNA profiles of adipocyte-derived microvesicles (ADMs) and their donor 3T3-L1 adipoyctes (Day 11) were compared. ADMs included RNA without typical 28S and 18S ribosomal RNA.
Project description:miRNA profiles of adipocyte-derived microvesicles (ADMs) on the Day 2-4 and Day 8-10 were compared. ADMs were prepared from the 48h-conditioned medium of 3T3-L1 adipocytes (Day 2-4 and Day 8-10) followed by RNA isolation.
Project description:Investigation of content of microvesicles exocytosed by cardiomyocytes. The aims of the study were to identify DNA and RNA content in microvesicles from cardiomyocytes. DNA and RNA were purified from microveicles from cultured cardiomyocytes. Illumina microarrays were used to detect DNA and mRNA molecules and identify them.
Project description:Glioblastoma tumour cells release microvesicles (exosomes) containing mRNA, miRNA and angiogenic proteins. These microvesicles are taken up by normal host cells, such as brain microvascular endothelial cells. By incorporating an mRNA for a reporter protein into these microvesicles, we demonstrate that messages delivered by microvesicles are translated by recipient cells. These microvesicles are also enriched in angiogenic proteins and stimulate tubule formation by endothelial cells. Tumour-derived microvesicles therefore serve as a means of delivering genetic information and proteins to recipient cells in the tumour environment. Glioblastoma microvesicles also stimulated proliferation of a human glioma cell line, indicating a self-promoting aspect. Messenger RNA mutant/variants and miRNAs characteristic of gliomas could be detected in serum microvesicles of glioblastoma patients. The tumour-specific EGFRvIII was detected in serum microvesicles from 7 out of 25 glioblastoma patients. Thus, tumour-derived microvesicles may provide diagnostic information and aid in therapeutic decisions for cancer patients through a blood test. The glioblastoma cell and exosome RNA was analyzed on two dual color arrays.
Project description:Microvesicles (MV) are small membrane-bound particles comprised of exosomes and various sized extracellular vesicles. These are released by a number of cell types. Microvesicles have a variety of cellular functions from communication to mediating growth and differentiation. Microvesicles contain proteins and nucleic acids. Previously, we showed that plasma microvesicles contain microRNAs (miRNAs). Based on our previous report, the majority of peripheral blood microvesicles are derived from platelets while mononuclear phagocytes, including macrophages, are the second most abundant population. Here, we characterized macrophage-derived microvesicles and whether they influenced the differentiation of naïve monocytes. We also identified the miRNA content of the macrophage-derived microvesicles. We found that RNA molecules contained in the macrophage-derived microvesicles were transported to target cells, including monocytes, endothelial cells, epithelial cells and fibroblasts. Furthermore, we found that miR-223 was transported to target cells and was functionally active. Based on our observations, we hypothesize that microvesicles bind to and activate target cells. Furthermore, we find that microvesicles induce the differentiation of macrophages. Thus, defining key components of this response may identify novel targets to regulate host defense and inflammation. We used GeneChip microarrays to examine changes in gene expression induced by MV in primary monocyte-derived macrophages (MDM) and in THP1 cells, and compare this to cells treated with GM-CSF and PMA, respectively.
Project description:Evaluation of microRNA expression profile of microvesicles (MVs) derived from endothelial progenitor cells (EPCs) cultured in different oxygen concentrations (normoxic/hypoxic conditions)