Project description:These data include the genome wide location of different histone modifications by ChIP sequencing in mouse ES cells, and RNA Seq data generated from wild type and EED KO mouse ES cells and knocked down for unrelated protein and Setd2 protein. ChIP-Seq: Immuno-precipitation of formaldehyde cross-linked chromatin prepared from wild type mouse E14 ES cells, wild type E36 ES cells, EED KO E36 ES cells, wild type Embryoid bodies (Ebs), EED KO Embryoid bodies (Ebs EED KO) using specific antibody against different histone modifications. RNA-Seq: Total RNA extracted from wild type E36 ES cells, EED KO E36 ES cells, wild type E36 Embryoid bodies (Ebs), EED KO Embryoid bodies (Ebs EED KO), E14 Ctrl KD, E14 Setd2 KD.
Project description:Analysis of embryonic sten cell-derived embryoid bodies following endoglin knock out. Loss of endoglin leads to profound reduction of key hematopoietic regulators including SCL, LMO2, Gata2, and TGF-? signaling molecule ALK-1. Results provide insight into molecular mechanisms underlying hemangioblast and primitive hematopoietic development. Total RNA obtained from differentiated day 3 EBs of endoglin knock out ES cells were compared to wild type E14 control ES cells.
Project description:Embryonic stem (ES) cells, when grown in suspension culture without feeders, spontaneously form round structures known as embryoid bodies. Given the appropriate conditions, these cells can differentiate over time into precursors of all three germ layers. Embryoid bodies, in a disorganized way, mimic early embryonic development to a certain extent and can be used as a synchronously differentiating large scale source of tissue for the study of biological determinants of early differentiation. Embryoid bodies have been used as a source for most early protocols that derive specific differentiated cell types from undifferentiated ES cells, although some protocols, notably those that derive neurons from ES cells, have moved on from EBs as a result of varying replicability and yield. We have decided to look at the transcriptomic profiles of embryoid bodies during the initial stages of embryoid body formation and differentiation, in order to pinpoint novel determinants of key developmental stages. Keywords: time course
Project description:To identify potential Elongin A targets during neuronal differentiation of ES cells, a cDNA microarray analysis comparing embryoid bodies (EBs) derived from Elongin A+/+ ES cells and Elongin A-/- ES cells was performed.