Project description:To unravel the molecular mechanism by which HOXB4 promotes the expansion of early hematopoietic progenitors within differentiating ES cells, we analzed the gene expression profiles of embryoid bodies (EBs) in which transcription of HOXB4 had been induced or not induced. A substantial number of the identified HOXB4 target genes are involved in signaling pathways important for controlling self-renewal, maintenance and differentiation of stem cells. Furthermore, we demonstrate that HOXB4 activity and FGF-signaling are intertwined. HOXB4-mediated expansion of ES cell-derived early progenitors was enhanced by specific and complete inhibition of FGF-receptors. In contrast, the expanding activity of HOXB4 on hematopoietic progenitors in day4-6 embryoid bodies was blunted in the presence of basic FGF (FGF2) indicating a dominant negative effect of FGF-signaling on the earliest hematopoietic cells. Taken together, we show that modulation of FGF signaling is an essential feature of HOXB4 activity in the context of embryonic hematopoiesis. Experiment Overall Design: The Hoxb4i ES cell line (Kyba et al. 2002, Cell 109:29-37) contains an integrated âtet-onâ cassette that allows induction of HOXB4 expression upon treatment with doxycycline. These ES cells can be used to produce hematopoietic cells through the formation of embryoid bodies (EBs). Hematopoiesis starts in these EBs at day 4 and the differentiation into hematopoietic fates can be quantified by colony assays on methyl-cellulose using cells dissociated from EBs at day 6 of incubation. The induction of HOXB4 by incubation with doxycycline increases the production of hematopoietic progenitors within EBs by day 6. Using this specific ES cell line, we compared the transcriptome between embryoid bodies (EBs) in which transcription of HOXB4 had been induced or not induced from day 4 to day 6 (48hours). Experiment Overall Design: Biological replicates: 3
Project description:To unravel the molecular mechanism by which HOXB4 promotes the expansion of early hematopoietic progenitors within differentiating ES cells, we analzed the gene expression profiles of embryoid bodies (EBs) in which transcription of HOXB4 had been induced or not induced. A substantial number of the identified HOXB4 target genes are involved in signaling pathways important for controlling self-renewal, maintenance and differentiation of stem cells. Furthermore, we demonstrate that HOXB4 activity and FGF-signaling are intertwined. HOXB4-mediated expansion of ES cell-derived early progenitors was enhanced by specific and complete inhibition of FGF-receptors. In contrast, the expanding activity of HOXB4 on hematopoietic progenitors in day4-6 embryoid bodies was blunted in the presence of basic FGF (FGF2) indicating a dominant negative effect of FGF-signaling on the earliest hematopoietic cells. Taken together, we show that modulation of FGF signaling is an essential feature of HOXB4 activity in the context of embryonic hematopoiesis. Keywords: plus/minus induction of HOXB4 gene expression by treatment with doxycycline (Dox)
Project description:To identify potential Elongin A targets during neuronal differentiation of ES cells, a cDNA microarray analysis comparing embryoid bodies (EBs) derived from Elongin A+/+ ES cells and Elongin A-/- ES cells was performed.
Project description:These data include the genome wide location of different histone modifications by ChIP sequencing in mouse ES cells, and RNA Seq data generated from wild type and EED KO mouse ES cells and knocked down for unrelated protein and Setd2 protein. ChIP-Seq: Immuno-precipitation of formaldehyde cross-linked chromatin prepared from wild type mouse E14 ES cells, wild type E36 ES cells, EED KO E36 ES cells, wild type Embryoid bodies (Ebs), EED KO Embryoid bodies (Ebs EED KO) using specific antibody against different histone modifications. RNA-Seq: Total RNA extracted from wild type E36 ES cells, EED KO E36 ES cells, wild type E36 Embryoid bodies (Ebs), EED KO Embryoid bodies (Ebs EED KO), E14 Ctrl KD, E14 Setd2 KD.
Project description:To identify potential Elongin A targets during neuronal differentiation of ES cells, a cDNA microarray analysis comparing embryoid bodies (EBs) derived from Elongin A+/+ ES cells and Elongin A-/- ES cells was performed. Gene expression in EBs derived from Elongin A+/+ and Elongin A-/- ES cells was measured at day 4 after retinoic acid treatment (2 ?M).
Project description:We differentiated mouse embryonic stem (mES) cells spontaneously into embryoid bodies (EBs). Gene expression of biological replicates of undifferentiated ES cells (0-day), 4-day, 8-day and 14-day EBs were measured by Affymetrix microarrays. Keywords: time course